Porous carbon-based materials are promised to be lightweight dielectric microwave absorbents.Deeply understanding the influence of graphitization grade and porous structure on the dielectric parameters is urgently req...Porous carbon-based materials are promised to be lightweight dielectric microwave absorbents.Deeply understanding the influence of graphitization grade and porous structure on the dielectric parameters is urgently required.Herein,utilizing the low boiling point of Zn,porous N-doped carbon was fabricated by carbonization of ZIF-8(Zn)at different temperature,and the microwave absorption performance was investigated.The porous N-doped carbon inherits the high porosity of ZIF-8 precursor.By increasing the carbonization temperature,the contents of Zn and N elements are decreased;the graphitization degree is improved;however,the specific surface area and porosity are increased first and then decreased.When the carbonization temperature is 1000°C,the porous N-doped carbon behaves enhanced microwave absorption.With an ultrathin thickness of 1.29 mm,the ideal RL reaches-50.57 dB at 16.95 GHz and the effective absorption bandwidth is 4.17 GHz.The mechanism of boosted microwave absorption is ascribed to the competition of graphitization and porosity as well as N dopants,resulting in high dielectric loss capacity and good impedance matching.The porous structure can prolong the pathways and raise the contact opportunity between microwaves and porous carbon,causing multiple scattering,interface polarization,and improved impedance matching.Besides,the N dopants can induce electron polarization and defect polarization.These results give a new insight to construct lightweight carbon-based microwave absorbents by regulating the graphitization and porosity.展开更多
Objective: To investigate the clinical efficacy of the cement-screw technique in repairing tibial plateau bone defects in total knee arthroplasty (TKA) recipients and summarize the preoperative prehabilitation strateg...Objective: To investigate the clinical efficacy of the cement-screw technique in repairing tibial plateau bone defects in total knee arthroplasty (TKA) recipients and summarize the preoperative prehabilitation strategies for such surgeries. Methods: A total of 33 TKA recipients (45 knees) in our department underwent repair of unilateral or bilateral tibial defects using the cement-screw technique. The subjects were divided into two groups based on the differences in preoperative interventions. The control group received routine preoperative health education according to the consensus, while the observation group received instructive and standardized prehabilitation exercises for four weeks in addition to the routine education. Scale scores, intraoperative parameters, and postoperative recovery indicators were recorded at different time pointsand subjected to statistical analysis for intra-group and inter-group differences. All subjects underwent long-term follow-up for at least 24 months. Results: Within each group at different time points, there were statistically significant differences in VAS, ROM, and HSS scores (p Conclusions: Cement-screw technique for repairing tibial plateau bone defects in TKA recipients can significantly relieve pain, and improve joint function. Prehabilitation can improve preoperative rehabilitation reserves in these patients, accelerate postoperative recovery, and contribute to better short-term clinical outcomes.展开更多
We report on a vortex laser chirped-pulse amplification(CPA)system that delivers pulses with a peak power of 45 TW.A focused intensity exceeding 1019 W/cm2 has been demonstrated for the first time by the vortex amplif...We report on a vortex laser chirped-pulse amplification(CPA)system that delivers pulses with a peak power of 45 TW.A focused intensity exceeding 1019 W/cm2 has been demonstrated for the first time by the vortex amplification scheme.Compared with other schemes of strong-field vortex generation with high energy flux but narrowband vortex-converting elements at the end of the laser,an important advantage of our scheme is that we can use a broadband but size-limited q-plate to realize broadband mode-converting in the front end of the CPA system,and achieve high-power amplification with a series of amplifiers.This method is low cost and can be easily implemented in an existing laser system.The results have verified the feasibility to obtain terawatt and even petawatt vortex laser amplification by a CPA system,which has important potential applications in strong-field laser physics,for example,generation of vortex particle beams with orbital angular momentum,fast ignition for inertial confinement fusion and simulation of the extreme astrophysical environment.展开更多
Layered molybdenum disulfide (MoS2) has received much attention as one of the most promising energy-storage and conversion materials for Li/Na ion batteries. Here, a simple and effective approach is proposed for the...Layered molybdenum disulfide (MoS2) has received much attention as one of the most promising energy-storage and conversion materials for Li/Na ion batteries. Here, a simple and effective approach is proposed for the rational design and preparation of hierarchical three-d imensional (3D) amorphous N-doped carbon nanotube@MoS2 nanosheets (3D-ANCNT@MoS2) via a simple hydrothermal method, followed by an annealing process. With such a unique nanoarchitecture, ultrathin MoS2 nanosheets grown on the external surfaces of polypyrrole-derived ANCNTs are assembled to form a hierarchical 3D nanoarchitecture, where the adopted ANCNTs serve not only as the template and continuous conductive matrix, but can also prevent MoS2 from aggregating and restacking, and help to buffer the volumetric expansion of MoS2 during cycling. More importantly, when evaluated as an anode material for lithium-ion batteries, the 3D-ANCNT@MoS2 composite exhibits excellent cycling stability, superior rate performance, and reversible specific capacity as high as 893.4 mAh·g^-1 at 0.2 A·g^-1 after 200 cycles in a half battery, and 669.4 mAh·g^-1 at 0.2 A·g^-1 after 100 cycles in the 3D-ANCNT@Mo2//LiCoO2 full battery. With respect to sodium-ion batteries, the outstanding reversible capacity, excellent rate behavior, and good cycling performance of 3D-ANCNT@MoS2 composites are also achieved.展开更多
基金financially supported by National Natural Science Foundation of China(Nos.51572218 and 11504293)Natural Science Foundation of Shaanxi Province(No.2019JM-138)+1 种基金Natural Science Foundation from Department of Science and Technology of Shaanxi Province(Nos.2021JQ-431,2021JM-304,and 2021JQ-427)Scientific Research Program Funded by Shaanxi Provincial Education Department(No.20JK0946)。
文摘Porous carbon-based materials are promised to be lightweight dielectric microwave absorbents.Deeply understanding the influence of graphitization grade and porous structure on the dielectric parameters is urgently required.Herein,utilizing the low boiling point of Zn,porous N-doped carbon was fabricated by carbonization of ZIF-8(Zn)at different temperature,and the microwave absorption performance was investigated.The porous N-doped carbon inherits the high porosity of ZIF-8 precursor.By increasing the carbonization temperature,the contents of Zn and N elements are decreased;the graphitization degree is improved;however,the specific surface area and porosity are increased first and then decreased.When the carbonization temperature is 1000°C,the porous N-doped carbon behaves enhanced microwave absorption.With an ultrathin thickness of 1.29 mm,the ideal RL reaches-50.57 dB at 16.95 GHz and the effective absorption bandwidth is 4.17 GHz.The mechanism of boosted microwave absorption is ascribed to the competition of graphitization and porosity as well as N dopants,resulting in high dielectric loss capacity and good impedance matching.The porous structure can prolong the pathways and raise the contact opportunity between microwaves and porous carbon,causing multiple scattering,interface polarization,and improved impedance matching.Besides,the N dopants can induce electron polarization and defect polarization.These results give a new insight to construct lightweight carbon-based microwave absorbents by regulating the graphitization and porosity.
文摘Objective: To investigate the clinical efficacy of the cement-screw technique in repairing tibial plateau bone defects in total knee arthroplasty (TKA) recipients and summarize the preoperative prehabilitation strategies for such surgeries. Methods: A total of 33 TKA recipients (45 knees) in our department underwent repair of unilateral or bilateral tibial defects using the cement-screw technique. The subjects were divided into two groups based on the differences in preoperative interventions. The control group received routine preoperative health education according to the consensus, while the observation group received instructive and standardized prehabilitation exercises for four weeks in addition to the routine education. Scale scores, intraoperative parameters, and postoperative recovery indicators were recorded at different time pointsand subjected to statistical analysis for intra-group and inter-group differences. All subjects underwent long-term follow-up for at least 24 months. Results: Within each group at different time points, there were statistically significant differences in VAS, ROM, and HSS scores (p Conclusions: Cement-screw technique for repairing tibial plateau bone defects in TKA recipients can significantly relieve pain, and improve joint function. Prehabilitation can improve preoperative rehabilitation reserves in these patients, accelerate postoperative recovery, and contribute to better short-term clinical outcomes.
基金supported by the National Natural Science Foundation of China(Nos.92050203,61925507,12174264,12004261,62075138,and 61827815)the Natural Science Foundation of Guangdong Province(Nos.2021A1515011909 and 2022A1515011457)the Shenzhen Fundamental Research Projects(Nos.JCYJ20200109105606426,JCYJ20190808164007485,JCYJ20190808121817100,JCYJ20190808143419622,and JCYJ20190808115601653).
文摘We report on a vortex laser chirped-pulse amplification(CPA)system that delivers pulses with a peak power of 45 TW.A focused intensity exceeding 1019 W/cm2 has been demonstrated for the first time by the vortex amplification scheme.Compared with other schemes of strong-field vortex generation with high energy flux but narrowband vortex-converting elements at the end of the laser,an important advantage of our scheme is that we can use a broadband but size-limited q-plate to realize broadband mode-converting in the front end of the CPA system,and achieve high-power amplification with a series of amplifiers.This method is low cost and can be easily implemented in an existing laser system.The results have verified the feasibility to obtain terawatt and even petawatt vortex laser amplification by a CPA system,which has important potential applications in strong-field laser physics,for example,generation of vortex particle beams with orbital angular momentum,fast ignition for inertial confinement fusion and simulation of the extreme astrophysical environment.
基金This work was supported by the National Natural Science Foundation of China (No. 51672213) and the Natural Science Foundation of Shaanxi Province (Nos. 2017ZDCXL-GY-08-01 and 2017JM2025).
文摘Layered molybdenum disulfide (MoS2) has received much attention as one of the most promising energy-storage and conversion materials for Li/Na ion batteries. Here, a simple and effective approach is proposed for the rational design and preparation of hierarchical three-d imensional (3D) amorphous N-doped carbon nanotube@MoS2 nanosheets (3D-ANCNT@MoS2) via a simple hydrothermal method, followed by an annealing process. With such a unique nanoarchitecture, ultrathin MoS2 nanosheets grown on the external surfaces of polypyrrole-derived ANCNTs are assembled to form a hierarchical 3D nanoarchitecture, where the adopted ANCNTs serve not only as the template and continuous conductive matrix, but can also prevent MoS2 from aggregating and restacking, and help to buffer the volumetric expansion of MoS2 during cycling. More importantly, when evaluated as an anode material for lithium-ion batteries, the 3D-ANCNT@MoS2 composite exhibits excellent cycling stability, superior rate performance, and reversible specific capacity as high as 893.4 mAh·g^-1 at 0.2 A·g^-1 after 200 cycles in a half battery, and 669.4 mAh·g^-1 at 0.2 A·g^-1 after 100 cycles in the 3D-ANCNT@Mo2//LiCoO2 full battery. With respect to sodium-ion batteries, the outstanding reversible capacity, excellent rate behavior, and good cycling performance of 3D-ANCNT@MoS2 composites are also achieved.