The rich phase behavior of block copolymers(BCPs)has drawn great attention in recent years.However,the double diamond(DD)phase is rarely obtained because of the competition between the minimization of interfacial ener...The rich phase behavior of block copolymers(BCPs)has drawn great attention in recent years.However,the double diamond(DD)phase is rarely obtained because of the competition between the minimization of interfacial energy and packing frustration.Here,a rod-coil BCP containing mesogen-jacketed liquid crystalline polymer is designed to acquire ordered bicontinuous network nanostructures.The reduction of internal energy originating from the orientational interaction among the rod blocks can compensate for the free energy penalty of packing frustration to stabilize the DD structure.The resulting BCP can also experience lamellae-to-DD and double gyroid-to-lamellae transitions by changing the annealing temperature.These results make the rod-coil BCP an excellent candidate for the self-assembly of ordered network structures,demonstrating great potential in nanopatterning and metamaterials.展开更多
An interesting order-order transition between two different complex nanostructures was observed in a new liquid crystalline linear coil-coil-rod ABC triblock copolymer(tri BCP). First, the ABC tri BCP, poly(dimethy...An interesting order-order transition between two different complex nanostructures was observed in a new liquid crystalline linear coil-coil-rod ABC triblock copolymer(tri BCP). First, the ABC tri BCP, poly(dimethylsiloxane)-bpolystyrene-b-poly{2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene}(PDMS-b-PS-b-PMPCS), was synthesized through sequential atom transfer radical polymerization. The degrees of polymerization of PDMS, PS, and PMPCS blocks are 58, 159, and 106, and the corresponding volume fractions of PDMS, PS, and PMPCS are 0.09, 0.29, and 0.62, respectively. The phase behaviors of the PDMS-b-PS diblock copolymer precursor and the final triblock copolymer were studied by smallangle X-ray scattering, one-dimensional wide-angle X-ray scattering, and transmission electron microscopy experiments. The PDMS-b-PS precursor self-assembles into hexagonally packed cylinders with a relatively small periodic size after thermal annealing. When the triblock copolymer is annealed at a relatively low temperature(120 ○C) at which the PMPCS block is in the amorphous state, the tri BCP forms core-shell hexagonally packed cylinders(CSH) with a relativly large periodic size. After the tri BCP is annealed above 140 ○C at which the PMPCS block transforms to the liquid crystalline(LC) phase, the nanophase-separated structure transforms to a three-phase four-layer lamellar structure(LAM-3P4L). Thus, accompanied with the transition of the PMPCS blocks from the amorphous state to the LC phase, the order-order transition from CSH to LAM-3P4 L occurs in the PDMS-b-PS-b-PMPCS ABC tri BCP.展开更多
Mesogen-jacketed liquid crystalline polymer (MJLCP) has attracted great attention because of its rigid conformation, facile synthesis, and structural controllability. In this feature article, the self-assembly of MJ...Mesogen-jacketed liquid crystalline polymer (MJLCP) has attracted great attention because of its rigid conformation, facile synthesis, and structural controllability. In this feature article, the self-assembly of MJLCP-based block copolymers (BCPs) is briefly reviewed, especially the nanostructures of rod-coil diblock copolymers (diBCPs), rod-rod diBCPs, and triblock copolymers. In addition, the properties of the self-assembled BCPs are also summarized, including their applications as liquid crystalline thermoplastic elastomers and solid polymer electrolytes. The article also discusses the major challenges and future directions in the study of MJLCP-based BCPs.展开更多
Liquid electrolytes used in lithium-ion batteries suffer from leakage,flammability,and lithium dendrites,making polymer electrolyte a potential alternative.Herein,a series of ABA triblock copolymers(ABA-x)containing a...Liquid electrolytes used in lithium-ion batteries suffer from leakage,flammability,and lithium dendrites,making polymer electrolyte a potential alternative.Herein,a series of ABA triblock copolymers(ABA-x)containing a mesogen-jacketed liquid crystalline polymer(MJLCP)with a polynorbornene backbone as segment A and a second polynorbornene-based polymer having poly(ethylene oxide)(PEO)side chains as segment B were synthesized through tandem ring-opening metathesis polymerizations.The block copolymers can self-assemble into ordered morphologies at 200℃.After doping of lithium salts and ionic liquid(IL),ABA-x self-assembles into cylindrical structures.The MJLCP segments with a high glass transition temperature and a stable liquid crystalline phase serve as physical crosslinking points,which significantly improve the mechanical performance of the polymer electrolytes.The ionic conductivity of ABA-x/lithium salt/IL is as high as 10-3 S·cm-1 at ambient temperature owing to the high IL uptake and the continuous phase of conducting PEO domains.The relationship between ionic conductivity and temperature fits the Vogel-Tamman-Fulcher(VTF)equation.In addition,the electrolyte films are flame retardant owing to the addition of IL.The polymer electrolytes with good safety and high ambient-temperature ionic conductivity developed in this work are potentially useful in solid lithium-ion batteries.展开更多
To allow anisotropies of optical properties in a magnetic field, nitroxide radical is introduced into the ortho-position of the phenylene ring in the side chain. A new azobenzene side-chain polymer (TEMPO-PAZ) contain...To allow anisotropies of optical properties in a magnetic field, nitroxide radical is introduced into the ortho-position of the phenylene ring in the side chain. A new azobenzene side-chain polymer (TEMPO-PAZ) containing TEMPO radical was synthesized. The polymer has a good solubility in organic solvents. The ESR spectrum of the polymer indicated three absorption lines characteristic of TEMPO radical. The optical phase conjugated responses (I-4) of the polymer films were investigated by degenerate four-wave mixing (DFWM). The experimental results showed that optical phase conjugated response of the TEMPO-PAZ could be easily controlled by choosing the appropriate direction of magnetic field presumably due to the nitroxide radical in the TEMPO-PAZ molecular structure. For the polymer investigated here, the nitroxide radical was introduced to increase optical phase conjugated response intensity in a magnetic field, aiming originally at searching for a new photo-active organic magnetic multifunctional materials.展开更多
We designed and synthesized a triarm star-shaped rod-rod block copolymer(BCP),(poly{2,5-bis[(4-methoxyphenyl)-oxycarbonyl]styrene}-block-poly(γ-benzyl-L-glutamate))3,(PMPCS-b-PBLG)3. The triarm core with th...We designed and synthesized a triarm star-shaped rod-rod block copolymer(BCP),(poly{2,5-bis[(4-methoxyphenyl)-oxycarbonyl]styrene}-block-poly(γ-benzyl-L-glutamate))3,(PMPCS-b-PBLG)3. The triarm core with three PMPCS-N3 segments was prepared by copper-mediated atom transfer radical polymerization of 2,5-bis[(4-methoxyphenyl)-oxycarbonyl]styrene initiated by a trifunctional initiator and a subsequent azide reaction. And the PBLG block with alkyne functionality was synthesized through ring-opening polymerization of γ-benzyl-L-glutamate N-carboxyanhydride initiated by propargylamine. Finally, Huisgen's 1,3-dipolar cycloaddition was employed to combine the triarm(PMPCS-N3)3 and PBLG segments. The chemical structure of the BCP was confirmed by 1H-NMR spectroscopy, Fourier-transform infrared spectroscopy, and gel permeation chromatographic analysis. Results from differential scanning calorimetry, polarized light microscopy, one-dimensional and two-dimensional wide-angle X-ray diffraction, and transmission electron microscopy techniques demonstrate that the triarm star-shaped rod-rod BCP self-assembles into a hexagon-in-lamella morphology, with the PMPCS block in the columnar nematic phase and the PBLG block in the hexagonal columnar arrangement packed in bilayers due to the rigid nature of the two blocks and the covalent connections in the star-shaped BCP.展开更多
Crystal orientation and melting behavior of poly(e-caprolactone) in a diblock copolymer of poly(e-caprolactone)- block-poly(2,5-bis[4-methoxyphenyl]oxycarbonyl)styrene) (PCL-b-PMPCS) was investigated. The deg...Crystal orientation and melting behavior of poly(e-caprolactone) in a diblock copolymer of poly(e-caprolactone)- block-poly(2,5-bis[4-methoxyphenyl]oxycarbonyl)styrene) (PCL-b-PMPCS) was investigated. The degrees of polymerization of the PCL and PMPCS block are 200 and 98, respectively. With the PMPCS in a columnar liquid crystalline phase, the diblock is rod-coil one, which exhibits a lamellar phase morphology with the PCL layer thickness of 15.2 nm. Since the glass transition temperature of PMPCS block is much higher than the melting temperature of PCL, the crystallization of PCL is in a one-dimensionally "hard" confinement environment. Mainly on the basis of two-dimensional wide-angle X-ray diffraction experiments, we identified the orientation of PCL isothermally crystallized at various crystallization temperatures (Tos). At high Tcs (To 〉 10 ℃), the c-axis of the PCL crystal is along the layer normal of the microphase-separated sturcture. Decreasing Tc can result in the tilting of PCL c-axis with respect to the layer normal. The lower the Tc is, the more the c-axis inclines. Meanwhile, the b-axis of PCL remains perpendicular to the layer normal. At a very low Tc of-78 ℃, the orientation of the PCL crystals is completely random. For the samples isothermally crystallized at Tc 〈 10 ℃, double melting behavior can be observed. While the low temperature endotherm reflects the melting of the crystals originally formed at the Tc applied, the high temperature one is associated with the crystals subjected to the process of recrystallization/reorganization upon heating due to the annealing effect.展开更多
Nano porous polymer film with a hexagonal colum nar(Coln)structure was fabricated by templated hydroge n-bonding discotic liquid crystals containing methacrylate functional group.The supramolecular hydrogen-bonded com...Nano porous polymer film with a hexagonal colum nar(Coln)structure was fabricated by templated hydroge n-bonding discotic liquid crystals containing methacrylate functional group.The supramolecular hydrogen-bonded complex T3Ph-L is composed of a 1,3/5-tris(1Hbenzo[d]imidazol-2-yl)benzene(T3Ph)core molecule as the hydrogen-bonding acceptor and 3,4,5-tris((11-(methacryloyloxy)undecyl)oxy)benzoic acid(L)peripheral molecules as donors.And the Colh structure is always retained after self-assembly,photo-crosslinking,and removal of the template T3Ph.The nanoporous polymer film can retain the Colh phase even under the dry condition,which indicates more possibilities for practical applicati ons.After chemical modificati on of the inner wall of the nano pores,the nan oporous polymer film with pores of about 1 nm selectively adsorbs ionic dyes,and the adsorption process is spontaneous and exothermic in nature.Homeotropic alignment can be obtained when the blend complex was sandwiched between two modified glasses after annealing by slow cooling,which shows that the nanoporous polymer film has potential in applications such as nanofiltration.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51921002,22203015 and 51725301)Natural Science Foundation of Fujian Province(No.2021J01591)the National Key R&D Program of China(No.2018YFB0703702).The suggestions and help offered by Prof.Rong-Ming Ho of National Tsing Hua University are greatly appreciated.The authors acknowledge the scientists at the synchrotron X-ray beamline 1W2A at Beijing Synchrotron Radiation Facility(BSRF)and the synchrotron X-ray beamline BL16B1 at Shanghai Synchrotron Radiation Facility(SSRF)for their assistance on the SAXS experiments.
文摘The rich phase behavior of block copolymers(BCPs)has drawn great attention in recent years.However,the double diamond(DD)phase is rarely obtained because of the competition between the minimization of interfacial energy and packing frustration.Here,a rod-coil BCP containing mesogen-jacketed liquid crystalline polymer is designed to acquire ordered bicontinuous network nanostructures.The reduction of internal energy originating from the orientational interaction among the rod blocks can compensate for the free energy penalty of packing frustration to stabilize the DD structure.The resulting BCP can also experience lamellae-to-DD and double gyroid-to-lamellae transitions by changing the annealing temperature.These results make the rod-coil BCP an excellent candidate for the self-assembly of ordered network structures,demonstrating great potential in nanopatterning and metamaterials.
基金supported by the National Natural Science Foundation of China(Nos.20874003 and 21174006)
文摘An interesting order-order transition between two different complex nanostructures was observed in a new liquid crystalline linear coil-coil-rod ABC triblock copolymer(tri BCP). First, the ABC tri BCP, poly(dimethylsiloxane)-bpolystyrene-b-poly{2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene}(PDMS-b-PS-b-PMPCS), was synthesized through sequential atom transfer radical polymerization. The degrees of polymerization of PDMS, PS, and PMPCS blocks are 58, 159, and 106, and the corresponding volume fractions of PDMS, PS, and PMPCS are 0.09, 0.29, and 0.62, respectively. The phase behaviors of the PDMS-b-PS diblock copolymer precursor and the final triblock copolymer were studied by smallangle X-ray scattering, one-dimensional wide-angle X-ray scattering, and transmission electron microscopy experiments. The PDMS-b-PS precursor self-assembles into hexagonally packed cylinders with a relatively small periodic size after thermal annealing. When the triblock copolymer is annealed at a relatively low temperature(120 ○C) at which the PMPCS block is in the amorphous state, the tri BCP forms core-shell hexagonally packed cylinders(CSH) with a relativly large periodic size. After the tri BCP is annealed above 140 ○C at which the PMPCS block transforms to the liquid crystalline(LC) phase, the nanophase-separated structure transforms to a three-phase four-layer lamellar structure(LAM-3P4L). Thus, accompanied with the transition of the PMPCS blocks from the amorphous state to the LC phase, the order-order transition from CSH to LAM-3P4 L occurs in the PDMS-b-PS-b-PMPCS ABC tri BCP.
文摘Mesogen-jacketed liquid crystalline polymer (MJLCP) has attracted great attention because of its rigid conformation, facile synthesis, and structural controllability. In this feature article, the self-assembly of MJLCP-based block copolymers (BCPs) is briefly reviewed, especially the nanostructures of rod-coil diblock copolymers (diBCPs), rod-rod diBCPs, and triblock copolymers. In addition, the properties of the self-assembled BCPs are also summarized, including their applications as liquid crystalline thermoplastic elastomers and solid polymer electrolytes. The article also discusses the major challenges and future directions in the study of MJLCP-based BCPs.
基金financially supported by the National Key R&D Program of China(No.2018YFB0703702)the National Natural Science Foundation of China(Nos.21774001,51725301 and 51921002)。
文摘Liquid electrolytes used in lithium-ion batteries suffer from leakage,flammability,and lithium dendrites,making polymer electrolyte a potential alternative.Herein,a series of ABA triblock copolymers(ABA-x)containing a mesogen-jacketed liquid crystalline polymer(MJLCP)with a polynorbornene backbone as segment A and a second polynorbornene-based polymer having poly(ethylene oxide)(PEO)side chains as segment B were synthesized through tandem ring-opening metathesis polymerizations.The block copolymers can self-assemble into ordered morphologies at 200℃.After doping of lithium salts and ionic liquid(IL),ABA-x self-assembles into cylindrical structures.The MJLCP segments with a high glass transition temperature and a stable liquid crystalline phase serve as physical crosslinking points,which significantly improve the mechanical performance of the polymer electrolytes.The ionic conductivity of ABA-x/lithium salt/IL is as high as 10-3 S·cm-1 at ambient temperature owing to the high IL uptake and the continuous phase of conducting PEO domains.The relationship between ionic conductivity and temperature fits the Vogel-Tamman-Fulcher(VTF)equation.In addition,the electrolyte films are flame retardant owing to the addition of IL.The polymer electrolytes with good safety and high ambient-temperature ionic conductivity developed in this work are potentially useful in solid lithium-ion batteries.
基金This work was supported by National Natural Science Foundation of China (No. 20134010) and Scientific Foundation for Returned Overseas Chinese Scholars. Ministry of Education.
文摘To allow anisotropies of optical properties in a magnetic field, nitroxide radical is introduced into the ortho-position of the phenylene ring in the side chain. A new azobenzene side-chain polymer (TEMPO-PAZ) containing TEMPO radical was synthesized. The polymer has a good solubility in organic solvents. The ESR spectrum of the polymer indicated three absorption lines characteristic of TEMPO radical. The optical phase conjugated responses (I-4) of the polymer films were investigated by degenerate four-wave mixing (DFWM). The experimental results showed that optical phase conjugated response of the TEMPO-PAZ could be easily controlled by choosing the appropriate direction of magnetic field presumably due to the nitroxide radical in the TEMPO-PAZ molecular structure. For the polymer investigated here, the nitroxide radical was introduced to increase optical phase conjugated response intensity in a magnetic field, aiming originally at searching for a new photo-active organic magnetic multifunctional materials.
基金financially supported by the National Natural Science Foundation of China(Nos.20990232 and 21174006)
文摘We designed and synthesized a triarm star-shaped rod-rod block copolymer(BCP),(poly{2,5-bis[(4-methoxyphenyl)-oxycarbonyl]styrene}-block-poly(γ-benzyl-L-glutamate))3,(PMPCS-b-PBLG)3. The triarm core with three PMPCS-N3 segments was prepared by copper-mediated atom transfer radical polymerization of 2,5-bis[(4-methoxyphenyl)-oxycarbonyl]styrene initiated by a trifunctional initiator and a subsequent azide reaction. And the PBLG block with alkyne functionality was synthesized through ring-opening polymerization of γ-benzyl-L-glutamate N-carboxyanhydride initiated by propargylamine. Finally, Huisgen's 1,3-dipolar cycloaddition was employed to combine the triarm(PMPCS-N3)3 and PBLG segments. The chemical structure of the BCP was confirmed by 1H-NMR spectroscopy, Fourier-transform infrared spectroscopy, and gel permeation chromatographic analysis. Results from differential scanning calorimetry, polarized light microscopy, one-dimensional and two-dimensional wide-angle X-ray diffraction, and transmission electron microscopy techniques demonstrate that the triarm star-shaped rod-rod BCP self-assembles into a hexagon-in-lamella morphology, with the PMPCS block in the columnar nematic phase and the PBLG block in the hexagonal columnar arrangement packed in bilayers due to the rigid nature of the two blocks and the covalent connections in the star-shaped BCP.
基金supported by the National Nature Science Foundation of China (Nos. 20774006, 20990232, and 21074003)
文摘Crystal orientation and melting behavior of poly(e-caprolactone) in a diblock copolymer of poly(e-caprolactone)- block-poly(2,5-bis[4-methoxyphenyl]oxycarbonyl)styrene) (PCL-b-PMPCS) was investigated. The degrees of polymerization of the PCL and PMPCS block are 200 and 98, respectively. With the PMPCS in a columnar liquid crystalline phase, the diblock is rod-coil one, which exhibits a lamellar phase morphology with the PCL layer thickness of 15.2 nm. Since the glass transition temperature of PMPCS block is much higher than the melting temperature of PCL, the crystallization of PCL is in a one-dimensionally "hard" confinement environment. Mainly on the basis of two-dimensional wide-angle X-ray diffraction experiments, we identified the orientation of PCL isothermally crystallized at various crystallization temperatures (Tos). At high Tcs (To 〉 10 ℃), the c-axis of the PCL crystal is along the layer normal of the microphase-separated sturcture. Decreasing Tc can result in the tilting of PCL c-axis with respect to the layer normal. The lower the Tc is, the more the c-axis inclines. Meanwhile, the b-axis of PCL remains perpendicular to the layer normal. At a very low Tc of-78 ℃, the orientation of the PCL crystals is completely random. For the samples isothermally crystallized at Tc 〈 10 ℃, double melting behavior can be observed. While the low temperature endotherm reflects the melting of the crystals originally formed at the Tc applied, the high temperature one is associated with the crystals subjected to the process of recrystallization/reorganization upon heating due to the annealing effect.
基金the National Key R&D Program of China(No.2018YFB0703702)the National Natural Science Foundation of China(No.51725301).
文摘Nano porous polymer film with a hexagonal colum nar(Coln)structure was fabricated by templated hydroge n-bonding discotic liquid crystals containing methacrylate functional group.The supramolecular hydrogen-bonded complex T3Ph-L is composed of a 1,3/5-tris(1Hbenzo[d]imidazol-2-yl)benzene(T3Ph)core molecule as the hydrogen-bonding acceptor and 3,4,5-tris((11-(methacryloyloxy)undecyl)oxy)benzoic acid(L)peripheral molecules as donors.And the Colh structure is always retained after self-assembly,photo-crosslinking,and removal of the template T3Ph.The nanoporous polymer film can retain the Colh phase even under the dry condition,which indicates more possibilities for practical applicati ons.After chemical modificati on of the inner wall of the nano pores,the nan oporous polymer film with pores of about 1 nm selectively adsorbs ionic dyes,and the adsorption process is spontaneous and exothermic in nature.Homeotropic alignment can be obtained when the blend complex was sandwiched between two modified glasses after annealing by slow cooling,which shows that the nanoporous polymer film has potential in applications such as nanofiltration.