Fully differential cross-sections of single ionization of He and Ne atoms are studied by linearly polarized extreme ultraviolet(XUV)photons in the energy range of 22.1 e V–43.7 e V,using a reaction microscope.Photoel...Fully differential cross-sections of single ionization of He and Ne atoms are studied by linearly polarized extreme ultraviolet(XUV)photons in the energy range of 22.1 e V–43.7 e V,using a reaction microscope.Photoelectron angular distributions and theβasymmetry parameters for He 1s^(2) electrons prove the reliability of our experiment,and the β asymmetry parameters extracted from the angular distributions of Ne 2p^(6) electrons are obtained.By comparing with different theoretical calculations,it is found that the contribution of the electron correlation effect in Ne 2p^(6) single ionization becomes increasingly important as the incident photon energy increases,while the relativistic effect is relatively low in the whole incident energy range.Our experimentalβasymmetry parameters may serve as a significant reference to test the most elaborated theories in the field.The datasets presented in this paper,including the photoelectron angular distributions andβasymmetry parameters,are openly available at https://doi.org/10.57760/sciencedb.j00113.00073.展开更多
基金the National Natural Science Foundation of China(Grant Nos.11905089 and U1932133)the National Key Research and Development Program of China(Grant No.2017YFA0402300)。
文摘Fully differential cross-sections of single ionization of He and Ne atoms are studied by linearly polarized extreme ultraviolet(XUV)photons in the energy range of 22.1 e V–43.7 e V,using a reaction microscope.Photoelectron angular distributions and theβasymmetry parameters for He 1s^(2) electrons prove the reliability of our experiment,and the β asymmetry parameters extracted from the angular distributions of Ne 2p^(6) electrons are obtained.By comparing with different theoretical calculations,it is found that the contribution of the electron correlation effect in Ne 2p^(6) single ionization becomes increasingly important as the incident photon energy increases,while the relativistic effect is relatively low in the whole incident energy range.Our experimentalβasymmetry parameters may serve as a significant reference to test the most elaborated theories in the field.The datasets presented in this paper,including the photoelectron angular distributions andβasymmetry parameters,are openly available at https://doi.org/10.57760/sciencedb.j00113.00073.