Photon nanosieves,as amplitude-type metasurfaces,have been demonstrated usually in a transmission mode for optical super-focusing,display,and holography,but the sieves with subwavelength size constrain optical transmi...Photon nanosieves,as amplitude-type metasurfaces,have been demonstrated usually in a transmission mode for optical super-focusing,display,and holography,but the sieves with subwavelength size constrain optical transmission,thus leading to low efficiency.Here,we report reflective photon nanosieves that consist of metallic meta-mirrors sitting on a trans-parent quartz substrate.Upon illumination,these meta-mirrors offer the reflectance of〜50%,which is higher than the transmission of visible light through diameter-identical nanoholes.Benefiting from this configuration,a meta-mirror-based reflective hologram has been demonstrated with good consistence between theoretical and experimental results over the broadband spectrum from 500 nm to 650 nm,meanwhile exhibiting total efficiency of〜7%.Additionally,if an additional high-reflectance layer is employed below these meta-mirrors,the efficiency can be enhanced further for optical anti-counterfeiting.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 12134013 and 61875181)USTC Research Funds of the Double First-Class Initiative (No. YD2030002003)+2 种基金Fundamental Research Funds for the Central Universities in ChinaCAS Poineer Hundred Talents Program the A*STAR IRG grant A2083c0058,CRF grantthe Centre for Micro and Nanoscale Research and Fabrication, University of Science and Technology of China for the support
文摘Photon nanosieves,as amplitude-type metasurfaces,have been demonstrated usually in a transmission mode for optical super-focusing,display,and holography,but the sieves with subwavelength size constrain optical transmission,thus leading to low efficiency.Here,we report reflective photon nanosieves that consist of metallic meta-mirrors sitting on a trans-parent quartz substrate.Upon illumination,these meta-mirrors offer the reflectance of〜50%,which is higher than the transmission of visible light through diameter-identical nanoholes.Benefiting from this configuration,a meta-mirror-based reflective hologram has been demonstrated with good consistence between theoretical and experimental results over the broadband spectrum from 500 nm to 650 nm,meanwhile exhibiting total efficiency of〜7%.Additionally,if an additional high-reflectance layer is employed below these meta-mirrors,the efficiency can be enhanced further for optical anti-counterfeiting.