Flexible pressure sensors with high sensitivity and linearity are highly desirable for robot sensing and human physiological signal detection.However,the current strategies for stabilizing axial microstructures(e.g.,m...Flexible pressure sensors with high sensitivity and linearity are highly desirable for robot sensing and human physiological signal detection.However,the current strategies for stabilizing axial microstructures(e.g.,micro-pyramids)are mainly susceptible to structural stiffening during compression,thereby limiting the realization of high sensitivity and linearity.Here,we report a bending-induced nonequilibrium compression process that effectively enhances the compressibility of microstructures,thereby crucially improving the efficiency of interfacial area growth of electric double layer(EDL).Based on this principle,we fabricate an iontronic flexible pressure sensor with vertical graphene(VG)array electrodes.Ultra-high sensitivity(185.09 kPa^(-1))and linearity(R^(2)=0.9999)are realized over a wide pressure range(0.49 Pa–66.67 k Pa).It also exhibits remarkable mechanical stability during compression and bending.The sensor is successfully employed in a robotic gripping task to recognize the targets of different materials and shapes based on a multilayer perception(MLP)neural network.It opens the door to realizing haptic sensing capabilities for robotic hands and prosthetic limbs.展开更多
Magnetic CeTe_(2)achieving superconductivity under external pressure has received considerable attention.The intermingling of 4f and 5d electrons from Ce raised the speculation of an unconventional pairing mechanism a...Magnetic CeTe_(2)achieving superconductivity under external pressure has received considerable attention.The intermingling of 4f and 5d electrons from Ce raised the speculation of an unconventional pairing mechanism arising from magnetic fluctuations.Here,we address this speculation using a nonmagnetic 4f-electron-free LaTe_(2)as an example.No structural phase transition can be observed up to 35 GPa in the in situ synchrotron diffraction patterns.Subsequent high-pressure electrical measurements show that LaTe_(2)exhibits superconductivity at20 Gpa with its T_(c)(4.5 K)being two times higher than its Ce-counterpart.Detailed theoretical calculations reveal that charge transfer from the 4p orbitals of the planar square Te-Te network to the 5d orbitals of La is responsible for the emergence of superconductivity in LaTe_(2),as confirmed by Hall experiments.Furthermore,we study the modulation of q_(CDW)by Sb substitution and find a record high T_(c)^(onset)~6.5 K in LaTe_(1.6)Sb_(0.4).Our work provides an informative clue to comprehend the role of 5d-4p hybridization in the relationship between charge density wave(CDW)and superconductivity in these RETe_(2)(RE=rare-earth elements)compounds.展开更多
基金supported by Guangdong Major Talent Project(2019CX01X014,and 2019QN01C177)。
文摘Flexible pressure sensors with high sensitivity and linearity are highly desirable for robot sensing and human physiological signal detection.However,the current strategies for stabilizing axial microstructures(e.g.,micro-pyramids)are mainly susceptible to structural stiffening during compression,thereby limiting the realization of high sensitivity and linearity.Here,we report a bending-induced nonequilibrium compression process that effectively enhances the compressibility of microstructures,thereby crucially improving the efficiency of interfacial area growth of electric double layer(EDL).Based on this principle,we fabricate an iontronic flexible pressure sensor with vertical graphene(VG)array electrodes.Ultra-high sensitivity(185.09 kPa^(-1))and linearity(R^(2)=0.9999)are realized over a wide pressure range(0.49 Pa–66.67 k Pa).It also exhibits remarkable mechanical stability during compression and bending.The sensor is successfully employed in a robotic gripping task to recognize the targets of different materials and shapes based on a multilayer perception(MLP)neural network.It opens the door to realizing haptic sensing capabilities for robotic hands and prosthetic limbs.
基金financially supported by the National Key Research and Development Program of China(Grant Nos.2018YFE0202600,2021YFA1401800,2017YFA0304700)the National Natural Science Foundation of China(Grant Nos.51922105,11804184,11974208,11774424,12174443,U1932217,and11974246)+1 种基金Beijing Natural Science Foundation(Grant No.Z200005)supported by the Synergetic Extreme Condition User Facility(SECUF)。
文摘Magnetic CeTe_(2)achieving superconductivity under external pressure has received considerable attention.The intermingling of 4f and 5d electrons from Ce raised the speculation of an unconventional pairing mechanism arising from magnetic fluctuations.Here,we address this speculation using a nonmagnetic 4f-electron-free LaTe_(2)as an example.No structural phase transition can be observed up to 35 GPa in the in situ synchrotron diffraction patterns.Subsequent high-pressure electrical measurements show that LaTe_(2)exhibits superconductivity at20 Gpa with its T_(c)(4.5 K)being two times higher than its Ce-counterpart.Detailed theoretical calculations reveal that charge transfer from the 4p orbitals of the planar square Te-Te network to the 5d orbitals of La is responsible for the emergence of superconductivity in LaTe_(2),as confirmed by Hall experiments.Furthermore,we study the modulation of q_(CDW)by Sb substitution and find a record high T_(c)^(onset)~6.5 K in LaTe_(1.6)Sb_(0.4).Our work provides an informative clue to comprehend the role of 5d-4p hybridization in the relationship between charge density wave(CDW)and superconductivity in these RETe_(2)(RE=rare-earth elements)compounds.