The photoinduced bulk polymerization of a reactive-hindered amine light stabilizers (r-HALS), 4-acryloyl-2, 2, 6,6-tetramethylpiperidinyl (ATMP), was performed at 80 C by using a DPC technique. An unique periodic expo...The photoinduced bulk polymerization of a reactive-hindered amine light stabilizers (r-HALS), 4-acryloyl-2, 2, 6,6-tetramethylpiperidinyl (ATMP), was performed at 80 C by using a DPC technique. An unique periodic exponential attenuation-type oscillating curve was found when the polymerization was carried out in air, but this phenomenon was not found in nitrogen. It is supposed that this unique kinetic performance may be attributed to nitroxyl radicals that are produced in situ from the oxidation of ATMP. ATMP polymer with narrow polydispersity (d = 1.03) can be obtained by photoinduced solution polymerization of ATMP. The signal detected in ESR may be assigned to the nitroxyl radicals in the matrix of ATMP polymer. Since this kind of recycling of nitroxyl radicals is well documented for the photostabilizing mechanism of HALS, the present results may serve as a kinetic evidence for this mechanism.展开更多
基金the National Natural Science Foundation of China(No.20274023)key project foundation of National Ministry of Education(No.02114)Guangdong Province Natural Science Foundation of China(No.021241)for supporting this work.
文摘The photoinduced bulk polymerization of a reactive-hindered amine light stabilizers (r-HALS), 4-acryloyl-2, 2, 6,6-tetramethylpiperidinyl (ATMP), was performed at 80 C by using a DPC technique. An unique periodic exponential attenuation-type oscillating curve was found when the polymerization was carried out in air, but this phenomenon was not found in nitrogen. It is supposed that this unique kinetic performance may be attributed to nitroxyl radicals that are produced in situ from the oxidation of ATMP. ATMP polymer with narrow polydispersity (d = 1.03) can be obtained by photoinduced solution polymerization of ATMP. The signal detected in ESR may be assigned to the nitroxyl radicals in the matrix of ATMP polymer. Since this kind of recycling of nitroxyl radicals is well documented for the photostabilizing mechanism of HALS, the present results may serve as a kinetic evidence for this mechanism.