Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity ana...Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.展开更多
This paper describes a flood routing method applied in an ungauged basin, utilizing the Muskingum model with variable parameters of wave travel time K and weight coefficient of discharge x based on the physical charac...This paper describes a flood routing method applied in an ungauged basin, utilizing the Muskingum model with variable parameters of wave travel time K and weight coefficient of discharge x based on the physical characteristics of the river reach and flood, including the reach slope, length, width, and flood discharge. Three formulas for estimating parameters of wide rectangular, triangular, and parabolic cross sections are proposed. The influence of the flood on channel flow routing parameters is taken into account. The HEC-HMS hydrological model and the geospatial hydrologic analysis module HEC-GeoHMS were used to extract channel or watershed characteristics and to divide sub-basins. In addition, the initial and constant-rate method, user synthetic unit hydrograph method, and exponential recession method were used to estimate runoff volumes, the direct runoff hydrograph, and the baseflow hydrograph, respectively. The Muskingum model with variable parameters was then applied in the Louzigou Basin in Henan Province of China, and of the results, the percentages of flood events with a relative error of peak discharge less than 20% and runoff volume less than 10% are both 100%. They also show that the percentages of flood events with coefficients of determination greater than 0.8 are 83.33%, 91.67%, and 87.5%, respectively, for rectangular, triangular, and parabolic cross sections in 24 flood events. Therefore, this method is applicable to ungauged basins.展开更多
AIM: To investigate into the potential involvement of pyrin containing 3 gene(NLRP3), a member of the nucleotide-binding oligomerization domain-like receptors with cytosolic pattern recognition, in the host defense of...AIM: To investigate into the potential involvement of pyrin containing 3 gene(NLRP3), a member of the nucleotide-binding oligomerization domain-like receptors with cytosolic pattern recognition, in the host defense of corneas against viruses.METHODS: The herpes viral keratitis model was utilized in BALB/c mice with inoculation of herpes simplex virus-1(HSV-1). Corneal tissues removed during therapy of patients with viral keratitis as well as a Simian vacuolating virus 40(SV40)-immortalized human corneal epithelial cell line were also examined.Immunohistochemistry was used to detect NLRP3 in these subjects, focusing on their distribution in tissue or cells. Western blot was used to measure the level of NLRP3 and another two related molecules in NLPR3 inflammasome, namely caspase-1 and IL-1β.RESULTS: The NLRP3 activation induced by HSV-1infection in corneas was accompanied with redistribution of NLRP3 from the cytoplasm to the nucleus in both murine and human corneal epithelial cells. Furthermore,in the SV40-immortalized human corneal epithelial cells,NLRP3 was exclusively located in the nucleus, and treatment of the cells with high concentration of extracellular potassium(known as an inhibitor of NLRP3activation) effectively drove NLRP3 back to the cytoplasm as reflected by both immunohistochemistry and Western blot.· CONCLUSION: It is proposed that herpes virus infection activates and causes redistribution of NLRP3 to nuclei. Whether this NLRP3 translocation occurs with other viral infections and in other cell types merit further study.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41271003)the National Basic Research Program of China (Grants No. 2010CB428403 and 2010CB951103)
文摘Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.
基金supported by the Technological Fund Item of China University of Mining and Technology (Grant No. OF4533)the Key Research Project of the Water Resources Department of Henan Province
文摘This paper describes a flood routing method applied in an ungauged basin, utilizing the Muskingum model with variable parameters of wave travel time K and weight coefficient of discharge x based on the physical characteristics of the river reach and flood, including the reach slope, length, width, and flood discharge. Three formulas for estimating parameters of wide rectangular, triangular, and parabolic cross sections are proposed. The influence of the flood on channel flow routing parameters is taken into account. The HEC-HMS hydrological model and the geospatial hydrologic analysis module HEC-GeoHMS were used to extract channel or watershed characteristics and to divide sub-basins. In addition, the initial and constant-rate method, user synthetic unit hydrograph method, and exponential recession method were used to estimate runoff volumes, the direct runoff hydrograph, and the baseflow hydrograph, respectively. The Muskingum model with variable parameters was then applied in the Louzigou Basin in Henan Province of China, and of the results, the percentages of flood events with a relative error of peak discharge less than 20% and runoff volume less than 10% are both 100%. They also show that the percentages of flood events with coefficients of determination greater than 0.8 are 83.33%, 91.67%, and 87.5%, respectively, for rectangular, triangular, and parabolic cross sections in 24 flood events. Therefore, this method is applicable to ungauged basins.
基金Supported by National Natural Science Foundation of China(No.81273212,81100651)Project of Science and Technology of Shandong Province(No.2014GSF118044)
文摘AIM: To investigate into the potential involvement of pyrin containing 3 gene(NLRP3), a member of the nucleotide-binding oligomerization domain-like receptors with cytosolic pattern recognition, in the host defense of corneas against viruses.METHODS: The herpes viral keratitis model was utilized in BALB/c mice with inoculation of herpes simplex virus-1(HSV-1). Corneal tissues removed during therapy of patients with viral keratitis as well as a Simian vacuolating virus 40(SV40)-immortalized human corneal epithelial cell line were also examined.Immunohistochemistry was used to detect NLRP3 in these subjects, focusing on their distribution in tissue or cells. Western blot was used to measure the level of NLRP3 and another two related molecules in NLPR3 inflammasome, namely caspase-1 and IL-1β.RESULTS: The NLRP3 activation induced by HSV-1infection in corneas was accompanied with redistribution of NLRP3 from the cytoplasm to the nucleus in both murine and human corneal epithelial cells. Furthermore,in the SV40-immortalized human corneal epithelial cells,NLRP3 was exclusively located in the nucleus, and treatment of the cells with high concentration of extracellular potassium(known as an inhibitor of NLRP3activation) effectively drove NLRP3 back to the cytoplasm as reflected by both immunohistochemistry and Western blot.· CONCLUSION: It is proposed that herpes virus infection activates and causes redistribution of NLRP3 to nuclei. Whether this NLRP3 translocation occurs with other viral infections and in other cell types merit further study.