Based on research into the applications of artificial intelligence (AI) technology in the manufacturing industry in recent years, we analyze the rapid development of core technologies in the new era of'Internet plu...Based on research into the applications of artificial intelligence (AI) technology in the manufacturing industry in recent years, we analyze the rapid development of core technologies in the new era of'Internet plus AI', which is triggering a great change in the models, means, and ecosystems of the manufacturing industry, as well as in the development of AI. We then propose new models, means, and forms of intelligent manufacturing, intelligent manufacturing system architecture, and intelligent man- ufactudng technology system, based on the integration of AI technology with information communications, manufacturing, and related product technology. Moreover, from the perspectives of intelligent manufacturing application technology, industry, and application demonstration, the current development in intelligent manufacturing is discussed. Finally, suggestions for the application of AI in intelligent manufacturing in China are presented.展开更多
AIM To investigate whether fecal microbiota transplantation (FMT) prevents hepatic encephalopathy (HE) in rats with carbon tetrachloride (CCl4)-induced acute hepatic dysfunction. METHODS A rat model of HE was establis...AIM To investigate whether fecal microbiota transplantation (FMT) prevents hepatic encephalopathy (HE) in rats with carbon tetrachloride (CCl4)-induced acute hepatic dysfunction. METHODS A rat model of HE was established with CCl4. Rat behaviors and spatial learning capability were observed, and hepatic necrosis, intestinal mucosal barrier, serum ammonia levels and intestinal permeability were determined in HE rats receiving FMT treatment. Furthermore, the expression of tight junction proteins (Claudin-1, Claudin-6 and Occludin), Toll-like receptor (TLR) 4/TLR9, interleukin (IL)-1 beta, IL-6 and tumor necrosis factor (TNF)-alpha was examined. RESULTS FMT improved rat behaviors, HE grade and spatial learning capability. Moreover, FMT prevented hepatic necrosis and intestinal mucosal barrier damage, leading to hepatic clearance of serum ammonia levels and reduced intestinal permeability. The expression of TLR4 and TLR9, two potent mediators of inflammatory response, was significantly downregulated in the liver of rats treated with FMT. Consistently, circulating proinflammatory factors such as interleukin (IL)-1 beta, IL-6 and tumor necrosis factor-alpha were remarkably decreased, indicating that FMT is able to limit systemic inflammation by decreasing the expression of TLR4 and TLR9. Importantly, HE-induced loss of tight junction proteins (Claudin-1, Claudin-6 and Occludin) was restored in intestinal tissues of rats receiving FMT treatment. CONCLUSION FMT enables protective effects in HE rats, and it improves the cognitive function and reduces the liver function indexes. FMT may cure HE by altering the intestinal permeability and improving the TLR response of the liver.展开更多
Some of the major manufacturing processes and corresponding mechanical properties of titanium clad steel plates were analyzed, and the consequences of research, manufacturing, and application of titanium clad steel pl...Some of the major manufacturing processes and corresponding mechanical properties of titanium clad steel plates were analyzed, and the consequences of research, manufacturing, and application of titanium clad steel plates in both markets of China and overseas were also summarized. As an economical and environmentally friendly technology, the roll bonding process is expected to become the next-generation mainstream process for the manufacturing of titanium clad steel plate. Some of the crucial and most important technical problems of this particular process, including vacuum sealing technology, surface treatment process technology, application of a transition layer, and rolling process, were discussed along with the advantageous mechanical properties and life-cycle economy of these plates processed by this technology. Finally, the market needs, application trends, and requirements of titanium clad steel plate were also considered from industries of petrochemical, shipbuilding, marine, and electric power.展开更多
Percent free prostatic-specific antigen (%fPSA) has been introduced as a tool to avoid unnecessary biopsies in patients with a serum PSA level of 4.0-10.0 ng ml^-1, however, it remains controversial whether %fPSA is...Percent free prostatic-specific antigen (%fPSA) has been introduced as a tool to avoid unnecessary biopsies in patients with a serum PSA level of 4.0-10.0 ng ml^-1, however, it remains controversial whether %fPSA is effective in PSA range of 10.1-20.0 ng ml^-1 in both Chinese and Western population. In this study, the diagnostic performance of %fPSA and serum PSA in predicting prostate cancer (PCa) and high-grade PCa (HGPCa) was analyzed in a multi-center biopsy cohort of 5915 consecutive Chinese patients who underwent prostate biopsy in 22 hospitals across China from January 1, 2010 to December 31, 2013. The indication for biopsy was PSA〉4.0 ng ml^-1 or/and suspicious digital rectal examination. Total and free serum PSA determinations were performed by three types of electrochemiluminescence immunoassays with recalibration to the World Health Organization standards. The diagnostics accuracy of PSA, %fPSA and %fPSA in combination with PSA (%fPSA + PSA) was determined by the area under the receivers operating characteristic curve (AUC). %fPSA was more effective than PSA in men aged ≥60 years old. The AUC was 0.584 and 0.635 in men aged ≥60 years old with a PSA of 4.0-10.0 ng ml^-1 and 10.1-20.0 ng ml^-1, respectively. The AUC of %fPSA was superior to that of PSA in predicting HGPCa in patients ≥60 years old in these two PSA range. Our results indicated that %fPSA is both statistically effective and clinical applicable to predict prostate biopsy outcome in Chinese patients aged ≥60 years old with a PSA of 4.0-10.0 ng ml^-1 and 10.1-20.0 ng ml^-1.展开更多
Mechanical properties of methane hydrate- bearing-sediments (MHBS) are basic parameters for safety analysis of hydrate exploration and exploitation. Young's modulus, cohesion, and internal friction angle of hydrate...Mechanical properties of methane hydrate- bearing-sediments (MHBS) are basic parameters for safety analysis of hydrate exploration and exploitation. Young's modulus, cohesion, and internal friction angle of hydrate- bearing sediments synthesized in laboratory, are investigated using tri-axial tests. Stress-strain curves and strength parameters are obtained and discussed for different compositions and different hydrate saturation, followed by empirical expressions related to the cohesion, internal friction angle, and modulus of MHBS. Almost all tested MHBS samples exhibit plastic failure. With the increase of total saturation of ice and methane hydrate (MH), the specimens' internal friction angle decreases while the cohesion increases.展开更多
To combat the crisis of today's synthetic polymers arising from unsustainable production and disposal,it is essential for the synthetic polymer community to reshape the current polymer industry with sustainable po...To combat the crisis of today's synthetic polymers arising from unsustainable production and disposal,it is essential for the synthetic polymer community to reshape the current polymer industry with sustainable polymers.As an emerging class of sustainable polymers,the development of chemically depolymerizable polymers(CDPs),which can undergo closed-loop depolymerization/repolymerization cycles to reproduce virgin polymers without the loss of properties from recovered monomers,offers an ideal solution to preserve finite natural resources,provides a feasible solution to the end-of-life issue of polymer waste,and thereby establishes a circular materials economy.However,two grand key challenges have been encountered in the establishment of practically useful CDPs:how to balance polymerization and depolymerization ability and how to unify conflicted depolymerizability and physical properties.Accordingly,this critical review article presents our vision for summarizing feasible strategies to overcome the above two significant challenges and the design principles for constructing an ideal CDP by highlighting selected major progress made in this rapidly expanding field.展开更多
文摘Based on research into the applications of artificial intelligence (AI) technology in the manufacturing industry in recent years, we analyze the rapid development of core technologies in the new era of'Internet plus AI', which is triggering a great change in the models, means, and ecosystems of the manufacturing industry, as well as in the development of AI. We then propose new models, means, and forms of intelligent manufacturing, intelligent manufacturing system architecture, and intelligent man- ufactudng technology system, based on the integration of AI technology with information communications, manufacturing, and related product technology. Moreover, from the perspectives of intelligent manufacturing application technology, industry, and application demonstration, the current development in intelligent manufacturing is discussed. Finally, suggestions for the application of AI in intelligent manufacturing in China are presented.
文摘AIM To investigate whether fecal microbiota transplantation (FMT) prevents hepatic encephalopathy (HE) in rats with carbon tetrachloride (CCl4)-induced acute hepatic dysfunction. METHODS A rat model of HE was established with CCl4. Rat behaviors and spatial learning capability were observed, and hepatic necrosis, intestinal mucosal barrier, serum ammonia levels and intestinal permeability were determined in HE rats receiving FMT treatment. Furthermore, the expression of tight junction proteins (Claudin-1, Claudin-6 and Occludin), Toll-like receptor (TLR) 4/TLR9, interleukin (IL)-1 beta, IL-6 and tumor necrosis factor (TNF)-alpha was examined. RESULTS FMT improved rat behaviors, HE grade and spatial learning capability. Moreover, FMT prevented hepatic necrosis and intestinal mucosal barrier damage, leading to hepatic clearance of serum ammonia levels and reduced intestinal permeability. The expression of TLR4 and TLR9, two potent mediators of inflammatory response, was significantly downregulated in the liver of rats treated with FMT. Consistently, circulating proinflammatory factors such as interleukin (IL)-1 beta, IL-6 and tumor necrosis factor-alpha were remarkably decreased, indicating that FMT is able to limit systemic inflammation by decreasing the expression of TLR4 and TLR9. Importantly, HE-induced loss of tight junction proteins (Claudin-1, Claudin-6 and Occludin) was restored in intestinal tissues of rats receiving FMT treatment. CONCLUSION FMT enables protective effects in HE rats, and it improves the cognitive function and reduces the liver function indexes. FMT may cure HE by altering the intestinal permeability and improving the TLR response of the liver.
文摘Some of the major manufacturing processes and corresponding mechanical properties of titanium clad steel plates were analyzed, and the consequences of research, manufacturing, and application of titanium clad steel plates in both markets of China and overseas were also summarized. As an economical and environmentally friendly technology, the roll bonding process is expected to become the next-generation mainstream process for the manufacturing of titanium clad steel plate. Some of the crucial and most important technical problems of this particular process, including vacuum sealing technology, surface treatment process technology, application of a transition layer, and rolling process, were discussed along with the advantageous mechanical properties and life-cycle economy of these plates processed by this technology. Finally, the market needs, application trends, and requirements of titanium clad steel plate were also considered from industries of petrochemical, shipbuilding, marine, and electric power.
文摘Percent free prostatic-specific antigen (%fPSA) has been introduced as a tool to avoid unnecessary biopsies in patients with a serum PSA level of 4.0-10.0 ng ml^-1, however, it remains controversial whether %fPSA is effective in PSA range of 10.1-20.0 ng ml^-1 in both Chinese and Western population. In this study, the diagnostic performance of %fPSA and serum PSA in predicting prostate cancer (PCa) and high-grade PCa (HGPCa) was analyzed in a multi-center biopsy cohort of 5915 consecutive Chinese patients who underwent prostate biopsy in 22 hospitals across China from January 1, 2010 to December 31, 2013. The indication for biopsy was PSA〉4.0 ng ml^-1 or/and suspicious digital rectal examination. Total and free serum PSA determinations were performed by three types of electrochemiluminescence immunoassays with recalibration to the World Health Organization standards. The diagnostics accuracy of PSA, %fPSA and %fPSA in combination with PSA (%fPSA + PSA) was determined by the area under the receivers operating characteristic curve (AUC). %fPSA was more effective than PSA in men aged ≥60 years old. The AUC was 0.584 and 0.635 in men aged ≥60 years old with a PSA of 4.0-10.0 ng ml^-1 and 10.1-20.0 ng ml^-1, respectively. The AUC of %fPSA was superior to that of PSA in predicting HGPCa in patients ≥60 years old in these two PSA range. Our results indicated that %fPSA is both statistically effective and clinical applicable to predict prostate biopsy outcome in Chinese patients aged ≥60 years old with a PSA of 4.0-10.0 ng ml^-1 and 10.1-20.0 ng ml^-1.
基金supported by the National Natural Science Foundation of China (11102209 and 11072245)the National High Technology Research and Development Program of China (863)the Key Program of Chinese Academy of Sciences (KJCX2-YW-L02)
文摘Mechanical properties of methane hydrate- bearing-sediments (MHBS) are basic parameters for safety analysis of hydrate exploration and exploitation. Young's modulus, cohesion, and internal friction angle of hydrate- bearing sediments synthesized in laboratory, are investigated using tri-axial tests. Stress-strain curves and strength parameters are obtained and discussed for different compositions and different hydrate saturation, followed by empirical expressions related to the cohesion, internal friction angle, and modulus of MHBS. Almost all tested MHBS samples exhibit plastic failure. With the increase of total saturation of ice and methane hydrate (MH), the specimens' internal friction angle decreases while the cohesion increases.
基金the National Natural Science Foundation of China(22031005)the National Natural Science Foundation of China(22371089)+13 种基金the National Natural Science Foundation of China(22071016)the National Natural Science Foundation of China(22125101)the National Natural Science Foundation of China(22293062)the National Natural Science Foundation of China(52322304)the National Natural Science Foundation of China(U23A2083)the National Natural Science Foundation of China(22225104)the National Natural Science Foundation of China(21925107)the National Natural Science Foundation of China(22371194)the National Key R&D Program of China(2021YFA1501700)the National Key R&D Program of China(2021YFA1501600)the National Key R&D Program of China(2021YFB3801901)Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates(2023B1212060003)the National Science Foundation(DMR-2042494)CNPC Innovation Fund(2020D-5007-0406)。
文摘To combat the crisis of today's synthetic polymers arising from unsustainable production and disposal,it is essential for the synthetic polymer community to reshape the current polymer industry with sustainable polymers.As an emerging class of sustainable polymers,the development of chemically depolymerizable polymers(CDPs),which can undergo closed-loop depolymerization/repolymerization cycles to reproduce virgin polymers without the loss of properties from recovered monomers,offers an ideal solution to preserve finite natural resources,provides a feasible solution to the end-of-life issue of polymer waste,and thereby establishes a circular materials economy.However,two grand key challenges have been encountered in the establishment of practically useful CDPs:how to balance polymerization and depolymerization ability and how to unify conflicted depolymerizability and physical properties.Accordingly,this critical review article presents our vision for summarizing feasible strategies to overcome the above two significant challenges and the design principles for constructing an ideal CDP by highlighting selected major progress made in this rapidly expanding field.