The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 3...The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 30 GeV Linac,a 1.1 GeV Damping Ring,a Booster capable of achieving energies up to 180 GeV,and a Collider operating at varying energy modes(Z,W,H,and tt).The Linac and Damping Ring are situated on the surface,while the subterranean Booster and Collider are housed in a 100 km circumference underground tunnel,strategically accommodating future expansion with provisions for a potential Super Proton Proton Collider(SPPC).The CEPC primarily serves as a Higgs factory.In its baseline design with synchrotron radiation(SR)power of 30 MW per beam,it can achieve a luminosity of 5×10^(34)cm^(-2)s^(-1)per interaction point(IP),resulting in an integrated luminosity of 13 ab^(-1)for two IPs over a decade,producing 2.6 million Higgs bosons.Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons,facilitating precise measurements of Higgs coupling at sub-percent levels,exceeding the precision expected from the HL-LHC by an order of magnitude.This Technical Design Report(TDR)follows the Preliminary Conceptual Design Report(Pre-CDR,2015)and the Conceptual Design Report(CDR,2018),comprehensively detailing the machine's layout,performance metrics,physical design and analysis,technical systems design,R&D and prototyping efforts,and associated civil engineering aspects.Additionally,it includes a cost estimate and a preliminary construction timeline,establishing a framework for forthcoming engineering design phase and site selection procedures.Construction is anticipated to begin around 2027-2028,pending government approval,with an estimated duration of 8 years.The commencement of experiments and data collection could potentially be initiated in the mid-2030s.展开更多
Polystyrene(PS)is rich in plastic materials,but it produces a large amount of waste every year,causing a huge burden on the environment.Although PS plastic is the source of a common"white pollution"in daily ...Polystyrene(PS)is rich in plastic materials,but it produces a large amount of waste every year,causing a huge burden on the environment.Although PS plastic is the source of a common"white pollution"in daily life,it still has a high utilization value.At the same time,the flammability of PS material determines that it cannot be applicated in places where fire accidents occur frequently.As a result,its application has been greatly limited.In order to realize the efficient utilization of waste PS and broaden its scope of application,PS was modified by hyper-crosslinking in order to improve its fire-retardant performance.In this method,the PS solution with high purity was obtained by dissolving waste PS foam with 1,2-dichloroethane(DCE),and then the hyper-crosslinked polymer with high specific surface area was prepared by adding cross-linking agent formaldehyde dimethyl acetal(FDA)and a Lewis-acid catalyst ferric chloride(FeCl_(3)).Further studies showed that the effects of the amount of cross-linking agent FDA,catalyst FeCl_(3) and PS on the reaction products were different.In addition,compared the as-prepared fire-retardant materials with PS foam from the aspects of flame retardancy and thermal insulation,it can be concluded that the fire-retardant performance of the materials prepared by this method has been significantly enhanced.And it is proved that this method is feasible towards the preparation of a large number of fire-retardant composite materials by using a scale-up experiment.展开更多
基金support from diverse funding sources,including the National Key Program for S&T Research and Development of the Ministry of Science and Technology(MOST),Yifang Wang's Science Studio of the Ten Thousand Talents Project,the CAS Key Foreign Cooperation Grant,the National Natural Science Foundation of China(NSFC)Beijing Municipal Science&Technology Commission,the CAS Focused Science Grant,the IHEP Innovation Grant,the CAS Lead Special Training Programthe CAS Center for Excellence in Particle Physics,the CAS International Partnership Program,and the CAS/SAFEA International Partnership Program for Creative Research Teams.
文摘The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 30 GeV Linac,a 1.1 GeV Damping Ring,a Booster capable of achieving energies up to 180 GeV,and a Collider operating at varying energy modes(Z,W,H,and tt).The Linac and Damping Ring are situated on the surface,while the subterranean Booster and Collider are housed in a 100 km circumference underground tunnel,strategically accommodating future expansion with provisions for a potential Super Proton Proton Collider(SPPC).The CEPC primarily serves as a Higgs factory.In its baseline design with synchrotron radiation(SR)power of 30 MW per beam,it can achieve a luminosity of 5×10^(34)cm^(-2)s^(-1)per interaction point(IP),resulting in an integrated luminosity of 13 ab^(-1)for two IPs over a decade,producing 2.6 million Higgs bosons.Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons,facilitating precise measurements of Higgs coupling at sub-percent levels,exceeding the precision expected from the HL-LHC by an order of magnitude.This Technical Design Report(TDR)follows the Preliminary Conceptual Design Report(Pre-CDR,2015)and the Conceptual Design Report(CDR,2018),comprehensively detailing the machine's layout,performance metrics,physical design and analysis,technical systems design,R&D and prototyping efforts,and associated civil engineering aspects.Additionally,it includes a cost estimate and a preliminary construction timeline,establishing a framework for forthcoming engineering design phase and site selection procedures.Construction is anticipated to begin around 2027-2028,pending government approval,with an estimated duration of 8 years.The commencement of experiments and data collection could potentially be initiated in the mid-2030s.
基金Thanks for financial support from the National Natural Science Foun-dation of China(No.51906252)the Natural Science Foundation of Jiangsu Province(NO.BK20190632)China Postdoctoral Science Foun-dation(2019M661980).
文摘Polystyrene(PS)is rich in plastic materials,but it produces a large amount of waste every year,causing a huge burden on the environment.Although PS plastic is the source of a common"white pollution"in daily life,it still has a high utilization value.At the same time,the flammability of PS material determines that it cannot be applicated in places where fire accidents occur frequently.As a result,its application has been greatly limited.In order to realize the efficient utilization of waste PS and broaden its scope of application,PS was modified by hyper-crosslinking in order to improve its fire-retardant performance.In this method,the PS solution with high purity was obtained by dissolving waste PS foam with 1,2-dichloroethane(DCE),and then the hyper-crosslinked polymer with high specific surface area was prepared by adding cross-linking agent formaldehyde dimethyl acetal(FDA)and a Lewis-acid catalyst ferric chloride(FeCl_(3)).Further studies showed that the effects of the amount of cross-linking agent FDA,catalyst FeCl_(3) and PS on the reaction products were different.In addition,compared the as-prepared fire-retardant materials with PS foam from the aspects of flame retardancy and thermal insulation,it can be concluded that the fire-retardant performance of the materials prepared by this method has been significantly enhanced.And it is proved that this method is feasible towards the preparation of a large number of fire-retardant composite materials by using a scale-up experiment.