期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Improving BERT Fine-Tuning via Self-Ensemble and Self-Distillation
1
作者 许一格 邱锡鹏 +1 位作者 周浬皋 黄萱菁 《Journal of Computer Science & Technology》 SCIE EI CSCD 2023年第4期853-866,共14页
Fine-tuning pre-trained language models like BERT have become an effective way in natural language processing(NLP)and yield state-of-the-art results on many downstream tasks.Recent studies on adapting BERT to new task... Fine-tuning pre-trained language models like BERT have become an effective way in natural language processing(NLP)and yield state-of-the-art results on many downstream tasks.Recent studies on adapting BERT to new tasks mainly focus on modifying the model structure,re-designing the pre-training tasks,and leveraging external data and knowledge.The fine-tuning strategy itself has yet to be fully explored.In this paper,we improve the fine-tuning of BERT with two effective mechanisms:self-ensemble and self-distillation.The self-ensemble mechanism utilizes the checkpoints from an experience pool to integrate the teacher model.In order to transfer knowledge from the teacher model to the student model efficiently,we further use knowledge distillation,which is called self-distillation because the distillation comes from the model itself through the time dimension.Experiments on the GLUE benchmark and the Text Classification benchmark show that our proposed approach can significantly improve the adaption of BERT without any external data or knowledge.We conduct exhaustive experiments to investigate the efficiency of the self-ensemble and self-distillation mechanisms,and our proposed approach achieves a new state-of-the-art result on the SNLI dataset. 展开更多
关键词 BERT deep learning fine-tuning natural language processing(NLP) pre-training model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部