视觉SLAM(Simultaneous Localization And Mapping,同时定位与建图)是移动机器人领域的核心技术,传统视觉SLAM还难以适用于高动态场景并且地图中缺少语义信息。提出一种动态环境语义SLAM方法,用深度学习网络对图像进行目标检测,检测动...视觉SLAM(Simultaneous Localization And Mapping,同时定位与建图)是移动机器人领域的核心技术,传统视觉SLAM还难以适用于高动态场景并且地图中缺少语义信息。提出一种动态环境语义SLAM方法,用深度学习网络对图像进行目标检测,检测动态目标所在区域,对图像进行特征提取并剔除动态物体所在区域的特征点,利用静态的特征点进行位姿计算,对关键帧进行语义分割,在构建语义地图时滤除动态物体的地图点构建出无动态物体干扰的语义地图。在TUM数据集上进行实验,结果显示该方法在动态环境下可以提升88.3%位姿估计精度,并且可同时构建出无动态物体干扰的语义地图。展开更多
目的在近岸合成孔径雷达(synthetic aperture radar,SAR)图像舰船检测中,由于陆地建筑及岛屿等复杂背景的影响,小型舰船与周边相似建筑及岛屿容易混淆。现有方法通常使用固定大小的方形卷积核提取图像特征。但是小型舰船在图像中占比较...目的在近岸合成孔径雷达(synthetic aperture radar,SAR)图像舰船检测中,由于陆地建筑及岛屿等复杂背景的影响,小型舰船与周边相似建筑及岛屿容易混淆。现有方法通常使用固定大小的方形卷积核提取图像特征。但是小型舰船在图像中占比较小,且呈长条形倾斜分布。固定大小的方形卷积核引入了过多背景信息,对分类造成干扰。为此,本文针对SAR图像舰船目标提出一种基于可变形空洞卷积的骨干网络。方法首先用可变形空洞卷积核代替传统卷积核,使提取特征位置更贴合目标形状,强化对舰船目标本身区域和边缘特征的提取能力,减少背景信息提取。然后提出3通道混合注意力机制来加强局部细节信息提取,突出小型舰船与暗礁、岛屿等的差异性,提高模型细分类效果。结果在SAR图像舰船数据集HRSID(high-resolution SAR images dataset)上的实验结果表明,本文方法应用在Cascade-RCNN(cascade region convolutional neural network)、YOLOv4(you only look once v4)和BorderDet(border detection)3种检测模型上,与原模型相比,对小型舰船的检测精度分别提高了3.5%、2.6%和2.9%,总体精度达到89.9%。在SSDD(SAR ship detection dataset)数据集上的总体精度达到95.9%,优于现有方法。结论本文通过改进骨干网络,使模型能够改变卷积核形状和大小,集中获取目标信息,抑制背景信息干扰,有效降低了SAR图像近岸复杂背景下小型舰船的误检漏检情况。展开更多
文摘视觉SLAM(Simultaneous Localization And Mapping,同时定位与建图)是移动机器人领域的核心技术,传统视觉SLAM还难以适用于高动态场景并且地图中缺少语义信息。提出一种动态环境语义SLAM方法,用深度学习网络对图像进行目标检测,检测动态目标所在区域,对图像进行特征提取并剔除动态物体所在区域的特征点,利用静态的特征点进行位姿计算,对关键帧进行语义分割,在构建语义地图时滤除动态物体的地图点构建出无动态物体干扰的语义地图。在TUM数据集上进行实验,结果显示该方法在动态环境下可以提升88.3%位姿估计精度,并且可同时构建出无动态物体干扰的语义地图。
文摘目的在近岸合成孔径雷达(synthetic aperture radar,SAR)图像舰船检测中,由于陆地建筑及岛屿等复杂背景的影响,小型舰船与周边相似建筑及岛屿容易混淆。现有方法通常使用固定大小的方形卷积核提取图像特征。但是小型舰船在图像中占比较小,且呈长条形倾斜分布。固定大小的方形卷积核引入了过多背景信息,对分类造成干扰。为此,本文针对SAR图像舰船目标提出一种基于可变形空洞卷积的骨干网络。方法首先用可变形空洞卷积核代替传统卷积核,使提取特征位置更贴合目标形状,强化对舰船目标本身区域和边缘特征的提取能力,减少背景信息提取。然后提出3通道混合注意力机制来加强局部细节信息提取,突出小型舰船与暗礁、岛屿等的差异性,提高模型细分类效果。结果在SAR图像舰船数据集HRSID(high-resolution SAR images dataset)上的实验结果表明,本文方法应用在Cascade-RCNN(cascade region convolutional neural network)、YOLOv4(you only look once v4)和BorderDet(border detection)3种检测模型上,与原模型相比,对小型舰船的检测精度分别提高了3.5%、2.6%和2.9%,总体精度达到89.9%。在SSDD(SAR ship detection dataset)数据集上的总体精度达到95.9%,优于现有方法。结论本文通过改进骨干网络,使模型能够改变卷积核形状和大小,集中获取目标信息,抑制背景信息干扰,有效降低了SAR图像近岸复杂背景下小型舰船的误检漏检情况。