Objectives: To investigate the mechanism of Liuwei Dihuang Pill (六味地黄丸, LDP) in treating postmenopausal osteoporosis (PMOP) with Shen (Kidney) yin deficiency. Methods: In this study, 205 cases of PMOP wer...Objectives: To investigate the mechanism of Liuwei Dihuang Pill (六味地黄丸, LDP) in treating postmenopausal osteoporosis (PMOP) with Shen (Kidney) yin deficiency. Methods: In this study, 205 cases of PMOP were divided into the PMOP Shen-yin deficiency group (Group A), PMOP Shen-yang deficiency group (Group B), PMOP without Shen deficiency group (Group C), and control group (Group N). Real-time polymerase chain reaction (RT-PCR) and Western blot techniques were used to observe the effects of LDP treatment on the cardiotrophin-like cytokine factor 1 (CLCF1), ankyrin repeat and SOCS box containing 1 (ASB1), and proldneticin 2 (PROK2) genes and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway. Results: The mRNA (P〈0.05) and protein (P〈0.01) expression levels of the CLCF1 gone in Group A were significantly lower than the corresponding levels in Group N. After LDP treatment for 3 months, the mRNA expression levels of the CLCF1 gone were obviously up-regulated (P〈0.01). After 6-month treatment, the expression levels of CLCF1 mRNA and protein were significantly up-regulated (both P〈0.01), and the average bone density of the top femur had significantly increased (P〈0.05). In vitro, CLCF1 overexpression resulted in a significant increase in the total protein and phosphorylated protein levels of JAK2 and STAT3. Conclusions: The CLCF1 gone is an important gone associated with PMOP Shen-yin deficiency and the therapeutic effects of LDP may be mediated by up-regulation of CLCF1 gone expression and activation of the JAK/STAT signaling pathway.展开更多
Metabolic syndrome(MetS)describes a set of risk factors that can eventually lead to the occurrence of cardiovascular and cerebrovascular disease.A detailed understanding of the MetS mechanism will be helpful in develo...Metabolic syndrome(MetS)describes a set of risk factors that can eventually lead to the occurrence of cardiovascular and cerebrovascular disease.A detailed understanding of the MetS mechanism will be helpful in developing effective prevention strategies and appropriate intervention tools.In this article,we discuss the relationship between the clinical symptoms of MetS and differences in the gut microbial community compared with healthy individuals,characterized by the proliferation of potentially harmful bacteria and the inhibition of beneficial ones.Interactions between gut microbiota and host metabolism have been shown to be mediated by a number of factors,including inflammation caused by gut barrier defects,short-chain fatty acids metabolism,and bile acid metabolism.However,although we can clearly establish a causal relationship between gut microbial profiles and MetS in animal experiments,the relationship between them is still controversial in humans.Therefore,we need more clinical studies to augment our understanding of how we can manipulate the gut microbiota and address the role of the gut microbiota in the prevention and treatment of MetS.展开更多
There is limited information about the factors that affect the power generation of single-chamber microbial fuel cells (MFCs) using soil organic matter as a fuel source. We examined the effect of soil and water dept...There is limited information about the factors that affect the power generation of single-chamber microbial fuel cells (MFCs) using soil organic matter as a fuel source. We examined the effect of soil and water depths, and temperature on the performance of soil MFCs with anode being embedded in the flooded soil and cathode in the overlaying water. Results showed that the MFC with 5 cm deep soil and 3 cm overlaying water exhibited the highest open circuit voltage of 562 mV and a power density of 0.72 mW m-2. The ohmic resistance increased with more soil and water. The polarization resistance of cathode increased with more soil while that of anode increased with more water. During the 30 d operation, the cell voltage positively correlated with temperature and reached a maximum of 162 mV with a 500 ft external load. After the operation, the bacterial 16S rRNA gene from the soil and anode was sequenced. The bacteria in the soil were more diverse than those adhere to the anode where the bacteria were mainly affiliated to Eseherichia coli and Deltaproteobacteria. In summary, the two bacterial groups may generate electricity and the electrical properties were affected by temperature and the depth of soil and water.展开更多
基金Supported by National Natural Science Foundation of China(Nos.81173280,81302995,81403420)Fujian Medical Innovation project(No.2011-CX-30)+1 种基金Science and Technology Department of Fujian Province autonomous non-profit research institutes topics project(No.2011R1038-5)Fujian Academy of Traditional Chinese autonomous topics Project(No.2012fjzyyk-5)
文摘Objectives: To investigate the mechanism of Liuwei Dihuang Pill (六味地黄丸, LDP) in treating postmenopausal osteoporosis (PMOP) with Shen (Kidney) yin deficiency. Methods: In this study, 205 cases of PMOP were divided into the PMOP Shen-yin deficiency group (Group A), PMOP Shen-yang deficiency group (Group B), PMOP without Shen deficiency group (Group C), and control group (Group N). Real-time polymerase chain reaction (RT-PCR) and Western blot techniques were used to observe the effects of LDP treatment on the cardiotrophin-like cytokine factor 1 (CLCF1), ankyrin repeat and SOCS box containing 1 (ASB1), and proldneticin 2 (PROK2) genes and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway. Results: The mRNA (P〈0.05) and protein (P〈0.01) expression levels of the CLCF1 gone in Group A were significantly lower than the corresponding levels in Group N. After LDP treatment for 3 months, the mRNA expression levels of the CLCF1 gone were obviously up-regulated (P〈0.01). After 6-month treatment, the expression levels of CLCF1 mRNA and protein were significantly up-regulated (both P〈0.01), and the average bone density of the top femur had significantly increased (P〈0.05). In vitro, CLCF1 overexpression resulted in a significant increase in the total protein and phosphorylated protein levels of JAK2 and STAT3. Conclusions: The CLCF1 gone is an important gone associated with PMOP Shen-yin deficiency and the therapeutic effects of LDP may be mediated by up-regulation of CLCF1 gone expression and activation of the JAK/STAT signaling pathway.
基金supported by a grant from the National Natural Science Foundation of China(No.81970705).
文摘Metabolic syndrome(MetS)describes a set of risk factors that can eventually lead to the occurrence of cardiovascular and cerebrovascular disease.A detailed understanding of the MetS mechanism will be helpful in developing effective prevention strategies and appropriate intervention tools.In this article,we discuss the relationship between the clinical symptoms of MetS and differences in the gut microbial community compared with healthy individuals,characterized by the proliferation of potentially harmful bacteria and the inhibition of beneficial ones.Interactions between gut microbiota and host metabolism have been shown to be mediated by a number of factors,including inflammation caused by gut barrier defects,short-chain fatty acids metabolism,and bile acid metabolism.However,although we can clearly establish a causal relationship between gut microbial profiles and MetS in animal experiments,the relationship between them is still controversial in humans.Therefore,we need more clinical studies to augment our understanding of how we can manipulate the gut microbiota and address the role of the gut microbiota in the prevention and treatment of MetS.
基金Supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences(No.KZCXZ-EW-402)the Hundred Talents Program of Chinese Academy of Sciences+1 种基金the International S&T Cooperation Program of China(No.2011DFB91710)the China Postdoctoral Science Foundation(Nos.2011M500410 and 2012T50142)
文摘There is limited information about the factors that affect the power generation of single-chamber microbial fuel cells (MFCs) using soil organic matter as a fuel source. We examined the effect of soil and water depths, and temperature on the performance of soil MFCs with anode being embedded in the flooded soil and cathode in the overlaying water. Results showed that the MFC with 5 cm deep soil and 3 cm overlaying water exhibited the highest open circuit voltage of 562 mV and a power density of 0.72 mW m-2. The ohmic resistance increased with more soil and water. The polarization resistance of cathode increased with more soil while that of anode increased with more water. During the 30 d operation, the cell voltage positively correlated with temperature and reached a maximum of 162 mV with a 500 ft external load. After the operation, the bacterial 16S rRNA gene from the soil and anode was sequenced. The bacteria in the soil were more diverse than those adhere to the anode where the bacteria were mainly affiliated to Eseherichia coli and Deltaproteobacteria. In summary, the two bacterial groups may generate electricity and the electrical properties were affected by temperature and the depth of soil and water.