The array spatial light field is an effective means for improving imaging speed in single-pixel imaging.However,distinguishing the intensity values of each sub-light field in the array spatial light field requires the...The array spatial light field is an effective means for improving imaging speed in single-pixel imaging.However,distinguishing the intensity values of each sub-light field in the array spatial light field requires the help of the array detector or the time-consuming deep-learning algorithm.Aiming at this problem,we propose measurable speckle gradation Hadamard single-pixel imaging(MSG-HSI),which makes most of the refresh mechanism of the device generate the Hadamard speckle patterns and the high sampling rate of the bucket detector and is capable of measuring the light intensity fluctuation of the array spatial light field only by a simple bucket detector.The numerical and experimental results indicate that data acquisition in MSG-HSI is 4 times faster than in traditional Hadamard single-pixel imaging.Moreover,imaging quality in MSG-HSI can be further improved by image stitching technology.Our approach may open a new perspective for single-pixel imaging to improve imaging speed.展开更多
Scattering medium in light path will cause distortion of the light field,resulting in poor signal-to-noise ratio(SNR)of ghost imaging.The disturbance is usually eliminated by the method of pre-compensation.We deduce t...Scattering medium in light path will cause distortion of the light field,resulting in poor signal-to-noise ratio(SNR)of ghost imaging.The disturbance is usually eliminated by the method of pre-compensation.We deduce the intensity fluctuation correlation function of the ghost imaging with the disturbance of the scattering medium,which proves that the ghost image consists of two correlated results:the image of scattering medium and the target object.The effect of the scattering medium can be eliminated by subtracting the correlated result between the light field after the scattering medium and the reference light from ghost image,which verifies the theoretical results.Our research may provide a new idea of ghost imaging in harsh environment.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62101187,61971184,and 62001162)the Hunan Provincial Natural Science Foundation(No.2022JJ40091)the Fundamental Research Funds for the Central Universities(No.531118010757)。
文摘The array spatial light field is an effective means for improving imaging speed in single-pixel imaging.However,distinguishing the intensity values of each sub-light field in the array spatial light field requires the help of the array detector or the time-consuming deep-learning algorithm.Aiming at this problem,we propose measurable speckle gradation Hadamard single-pixel imaging(MSG-HSI),which makes most of the refresh mechanism of the device generate the Hadamard speckle patterns and the high sampling rate of the bucket detector and is capable of measuring the light intensity fluctuation of the array spatial light field only by a simple bucket detector.The numerical and experimental results indicate that data acquisition in MSG-HSI is 4 times faster than in traditional Hadamard single-pixel imaging.Moreover,imaging quality in MSG-HSI can be further improved by image stitching technology.Our approach may open a new perspective for single-pixel imaging to improve imaging speed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61871431,61971184,and 62001162)。
文摘Scattering medium in light path will cause distortion of the light field,resulting in poor signal-to-noise ratio(SNR)of ghost imaging.The disturbance is usually eliminated by the method of pre-compensation.We deduce the intensity fluctuation correlation function of the ghost imaging with the disturbance of the scattering medium,which proves that the ghost image consists of two correlated results:the image of scattering medium and the target object.The effect of the scattering medium can be eliminated by subtracting the correlated result between the light field after the scattering medium and the reference light from ghost image,which verifies the theoretical results.Our research may provide a new idea of ghost imaging in harsh environment.