As a famous fruit worldwide,citrus is susceptible to green mold caused by Penicillium digitatum,which causes large economic losses every year.e-Poly-L-lysine(e-PL)is a novel preservative with strong inhibitory effects...As a famous fruit worldwide,citrus is susceptible to green mold caused by Penicillium digitatum,which causes large economic losses every year.e-Poly-L-lysine(e-PL)is a novel preservative with strong inhibitory effects on fungi,and has the capacity to induce disease resistance in fruit,but the mechanism has been reported rarely,especially in citrus.In the present study,8ooμg/mL e-PL and P digitatum spores were inoculated in two different wounds on the citrus pericarp at an interval of 24 h.The results revealed that e-PL inhibited that the development of green mold without direct contact with P digitatum,indicating that the disease resistance of citrus was activated.Transcriptome analysis revealed that e-PL activated amino acid metabolism and phenylpropanoid biosynthesis.Besides,the accumulation of glutamic acid,proline,arginine,serine,lysine,phenylalanine,and tyrosine were changed during storage.In phenylpropanoid biosynthesis,-PL increased phenylalanine ammonia-lyase(PAL),cinnamate 4-hydroxylase(C4H),and 4-coumarate:coenzyme A ligase(4CL)activities and total phenolic and flavonoid contents.Importantly.among these phenolic compounds,e-PL promoted the accumulation of individual phenolic compounds including ferulic acid,chlorogenic acid,p-coumaric acid,caffeic acid,gallic acid,catechins,epicatechin,and narirutin.In conclusion,e-PL enhanced the resistance of citrus through amino acid metabolism and accumulation of phenolic compounds.These results improved the knowledge of the mechanism of-PL-induced disease resistance and provided a fresh theoretical basis for the use of e-PL in postharvest citrus preservation.展开更多
In a bird strike, the bird undergoes large deformation like flows; while most part of the structure is in small deformation, the region near the impact point may experience large deformations, even fail. This paper de...In a bird strike, the bird undergoes large deformation like flows; while most part of the structure is in small deformation, the region near the impact point may experience large deformations, even fail. This paper develops a coupled shell-material point method (CSMPM) for bird strike simulation, in which the bird is modeled by the material point method (MPM) and the aircraft structure is modeled by the Belytschko-Lin-Tsay shell element. The interaction between the bird and the structure is handled by a particle-to-surface contact algorithm. The distorted and failed shell elements will be eroded if a certain criterion is reached. The proposed CSMPM takes full advantages of both the finite element method and the MPM for bird strike simulation and is validated by several numerical examples.展开更多
基金supported by the National Key Research and Development Program of China(No.2021YFD2100505)the Project of Chongqing Science and Technology Bureau,China(cstc2021jscx-cylhX0015)the Project of Sichuan Science and Technology Plan,China(No.2021YFQ0071).
文摘As a famous fruit worldwide,citrus is susceptible to green mold caused by Penicillium digitatum,which causes large economic losses every year.e-Poly-L-lysine(e-PL)is a novel preservative with strong inhibitory effects on fungi,and has the capacity to induce disease resistance in fruit,but the mechanism has been reported rarely,especially in citrus.In the present study,8ooμg/mL e-PL and P digitatum spores were inoculated in two different wounds on the citrus pericarp at an interval of 24 h.The results revealed that e-PL inhibited that the development of green mold without direct contact with P digitatum,indicating that the disease resistance of citrus was activated.Transcriptome analysis revealed that e-PL activated amino acid metabolism and phenylpropanoid biosynthesis.Besides,the accumulation of glutamic acid,proline,arginine,serine,lysine,phenylalanine,and tyrosine were changed during storage.In phenylpropanoid biosynthesis,-PL increased phenylalanine ammonia-lyase(PAL),cinnamate 4-hydroxylase(C4H),and 4-coumarate:coenzyme A ligase(4CL)activities and total phenolic and flavonoid contents.Importantly.among these phenolic compounds,e-PL promoted the accumulation of individual phenolic compounds including ferulic acid,chlorogenic acid,p-coumaric acid,caffeic acid,gallic acid,catechins,epicatechin,and narirutin.In conclusion,e-PL enhanced the resistance of citrus through amino acid metabolism and accumulation of phenolic compounds.These results improved the knowledge of the mechanism of-PL-induced disease resistance and provided a fresh theoretical basis for the use of e-PL in postharvest citrus preservation.
基金Supported by the National Natural Science Foundation of China(11390363)
文摘In a bird strike, the bird undergoes large deformation like flows; while most part of the structure is in small deformation, the region near the impact point may experience large deformations, even fail. This paper develops a coupled shell-material point method (CSMPM) for bird strike simulation, in which the bird is modeled by the material point method (MPM) and the aircraft structure is modeled by the Belytschko-Lin-Tsay shell element. The interaction between the bird and the structure is handled by a particle-to-surface contact algorithm. The distorted and failed shell elements will be eroded if a certain criterion is reached. The proposed CSMPM takes full advantages of both the finite element method and the MPM for bird strike simulation and is validated by several numerical examples.