A non-Maxwellian collision kernel is employed to study the evolution of wealth distribution in a multi-agent society.The collision kernel divides agents into two different groups under certain conditions. Applying the...A non-Maxwellian collision kernel is employed to study the evolution of wealth distribution in a multi-agent society.The collision kernel divides agents into two different groups under certain conditions. Applying the kinetic theory of rarefied gases, we construct a two-group kinetic model for the evolution of wealth distribution. Under the continuous trading limit, the Fokker–Planck equation is derived and its steady-state solution is obtained. For the non-Maxwellian collision kernel, we find a suitable redistribution operator to match the taxation. Our results illustrate that taxation and redistribution have the property to change the Pareto index.展开更多
Black widows(BWs)are millisecond pulsars ablating their companion stars.The out-flowing material from the companion can block the radio emission of the pulsar,resulting in eclipses.In this paper,we construct a model f...Black widows(BWs)are millisecond pulsars ablating their companion stars.The out-flowing material from the companion can block the radio emission of the pulsar,resulting in eclipses.In this paper,we construct a model for the radio eclipse by calculating the geometry of the bow shock between the winds of the pulsar and companion,where the shock shapes the eclipsing medium but had not been described in detail in previous works.The model is further used to explain the variations of the flux density and dispersion measure of three BW pulsars(i.e.,PSR B1957+20,J2055+3829,and J2051-0827)detected by the Five-hundred-meter Aperture Spherical radio Telescope.Consequently,we constrained the parameters of the three BW systems such as the inclination angles and true anomalies of the observer as well as the mass-loss rates and wind velocity of the companion stars.With the help of these constraints,it is expected that magnetic fields of companion stars and even masses of pulsars could further be determined as some extra observation can be achieved in the future.展开更多
基金financial support from the Ministry of Science and Technology of China(2019YFA0705900)National Natural Science Foundation of China(U20A6002,22275058,and 22109046)+2 种基金Guangdong Innovative and Entrepreneurial Research Team Program(2019ZT08L075)Guangdong Basic and Applied Basic Research Foundation(2022B1515120008)the Start-up Founding Research and Cultivation Project funded by Ningbo University of Technology(2022KQ65 and 2022TS03)。
基金Project supported by the National Natural Science Foundation of China(Grant No.11471263)the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(Grant No.2021D01B09)+1 种基金the Initial Research Foundation of Kashi University(Grant No.022024076)“Mathematics and Finance Research Centre Funding Project”,Dazhou Social Science Federation(Grant No.SCMF202305)。
文摘A non-Maxwellian collision kernel is employed to study the evolution of wealth distribution in a multi-agent society.The collision kernel divides agents into two different groups under certain conditions. Applying the kinetic theory of rarefied gases, we construct a two-group kinetic model for the evolution of wealth distribution. Under the continuous trading limit, the Fokker–Planck equation is derived and its steady-state solution is obtained. For the non-Maxwellian collision kernel, we find a suitable redistribution operator to match the taxation. Our results illustrate that taxation and redistribution have the property to change the Pareto index.
基金supported by the National SKA program of China(2020SKA0120300)the National Key R&D Program of China(2021YFA0718500)+2 种基金the National Natural Science Foundation of China(grant Nos.11833003,12033001)the China Postdoctoral Science Foundation(No.2023T160410)the Opening Foundation of Xinjiang Key Laboratory(No.2021D04016)。
文摘Black widows(BWs)are millisecond pulsars ablating their companion stars.The out-flowing material from the companion can block the radio emission of the pulsar,resulting in eclipses.In this paper,we construct a model for the radio eclipse by calculating the geometry of the bow shock between the winds of the pulsar and companion,where the shock shapes the eclipsing medium but had not been described in detail in previous works.The model is further used to explain the variations of the flux density and dispersion measure of three BW pulsars(i.e.,PSR B1957+20,J2055+3829,and J2051-0827)detected by the Five-hundred-meter Aperture Spherical radio Telescope.Consequently,we constrained the parameters of the three BW systems such as the inclination angles and true anomalies of the observer as well as the mass-loss rates and wind velocity of the companion stars.With the help of these constraints,it is expected that magnetic fields of companion stars and even masses of pulsars could further be determined as some extra observation can be achieved in the future.