Novel Ti6Al4V particles-reinforced AZ91 Mg matrix composites were successfully fabricated by stir casting method. The stirring time in semisolid condition directly affected the particle distribution and the quality of...Novel Ti6Al4V particles-reinforced AZ91 Mg matrix composites were successfully fabricated by stir casting method. The stirring time in semisolid condition directly affected the particle distribution and the quality of the ingots. Furthermore, the optimal speed of the heating and the liquid stirring could overcome particle settlement caused by the density difference between the matrix and the particles. Ti6Al4V particles distributed uniformly in the composites with different particle contents. The average grain size decreased with the increase in the particle contents. The Ti6A14V particles bonded pretty well with the alloy matrix. In addition, there were some interfacial reactions in the composites. There were rod-like A13Ti phases at the interface. The precipitates extended from the particle surface to the matrix, and they might improve the interfacial bonding strength. The ultimate tensile strength, yield strength and elastic modulus were enhanced as the particle contents increased, and the elongation was much better than that of the same matrix material reinforced with SiC particles. Thus, the novel composites exhibit better comprehensive mechanical properties.展开更多
Gradient boosting decision tree(GBDT)machine learning(ML)method was adopted for the first time to automatically recognize and conduct quantitative statistical analysis of boundaries in bainitic microstructure using el...Gradient boosting decision tree(GBDT)machine learning(ML)method was adopted for the first time to automatically recognize and conduct quantitative statistical analysis of boundaries in bainitic microstructure using electron back-scatter diffraction(EBSD)data.In spite of lack of large sets of EBSD data,we were successful in achieving the desired accuracy and accomplishing the objective of recognizing the boundaries.Compared with a low model accuracy of<50%as using Euler angles or axis-angle pair as characteristic features,the accuracy of the model was significantly enhanced to about 88%when the Euler angle was converted to overall misorientation angle(OMA)and specific misorientation angle(SMA)and considered as important features.In this model,the recall score of prior austenite grain(PAG)boundary was~93%,high angle packet boundary(OMA>40°)was~97%,and block boundary was~96%.The derived outcomes of ML were used to obtain insights into the ductile-to-brittle transition(DBTT)behavior.Interestingly,ML modeling approach suggested that DBTT was not determined by the density of high angle grain boundaries,but significantly influenced by the density of PAG and packet boundaries.The study underscores that ML has a great potential in detailed recognition of complex multi-hierarchical microstructure such as bainite and martensite and relates to material performance.展开更多
High corrosion resistance of alloys is essential for their structural applications;however,most alloys suffer from degradation of their corrosion resistance with the increasing acidity of their surround-ings.Nonethele...High corrosion resistance of alloys is essential for their structural applications;however,most alloys suffer from degradation of their corrosion resistance with the increasing acidity of their surround-ings.Nonetheless,we developed a series of medium-entropy alloys(MEAs)in this work,which ex-hibit high strength,superior fracture toughness and ultra-high corrosion resistance,outperforming the variety of corrosion resistant alloys hitherto reported.Most interestingly,our MEAs exhibit an unusual anti-corrosion behavior and their corrosion resistance increases with acidity in Cl−containing solutions.Through extensive thermodynamic calculations,density functional theory(DFT)simulations and experi-ments,we reveal that the unusual anti-corrosion behavior of our MEAs can be attributed to their surface chemical complexity,which facilitates the physio-chemical-absorption of H_(2)O and O_(2)and thus the rapid formation of metastable medium entropy passive films that contain the lowest amount of defects,as compared to the passive films on conventional alloys reported in the literature.展开更多
We examined experimentally the effects of incoming surface wind on the turbine wake and the wake interference among upstream and downstream wind turbines sited in atmospheric boundary layer(ABL) winds. The experimen...We examined experimentally the effects of incoming surface wind on the turbine wake and the wake interference among upstream and downstream wind turbines sited in atmospheric boundary layer(ABL) winds. The experiment was conducted in a large-scale ABL wind tunnel with scaled wind turbine models mounted in different incoming surface winds simulating the ABL winds over typical offshore/onshore wind farms. Power outputs and dynamic loadings acting on the turbine models and the wake flow characteristics behind the turbine models were quantified. The results revealed that the incoming surface winds significantly affect the turbine wake characteristics and wake interference between the upstream and downstream turbines. The velocity deficits in the turbine wakes recover faster in the incoming surface winds with relatively high turbulence levels. Variations of the power outputs and dynamic wind loadings acting on the downstream turbines sited in the wakes of upstream turbines are correlated well with the turbine wakes characteristics. At the same downstream locations, the downstream turbines have higher power outputs and experience greater static and fatigue loadings in the inflow with relatively high turbulence level, suggesting a smaller effect of wake interference for the turbines sited in onshore wind farms.展开更多
The single-phase face-centered cubic(fcc)-structured Fe_(50)Mn_(27)Ni_(10)Cr_(13) high entropy alloy(HEA)exhibits good ductility but low strength,which presents a challenge.By Mo-alloying and thermomechanical treatmen...The single-phase face-centered cubic(fcc)-structured Fe_(50)Mn_(27)Ni_(10)Cr_(13) high entropy alloy(HEA)exhibits good ductility but low strength,which presents a challenge.By Mo-alloying and thermomechanical treatments,we have designed the(Fe_(50)Mn_(27)Ni_(10)Cr_(13))_(100-x)Mo_(x)(x=0-6 at.%)alloy series with a wide range of mechanical properties.The careful control of secondary phases introduced in the cold-rolled and annealed(Fe_(50)Mn_(27)Ni_(10)Cr_(13))Mo_(2) sample resulted in an enhanced tensile strength from 250 MPa to 665 MPa,still having~25%ductility.TEM investigations of this alloy revealed the presence of deformation twins,dislocation cells,and ordered bcc na no-pa rticles embedded in the ductile fcc matrix post-deformation.The observed deformation structures are an indication of succes s ful cooperation between deformation twinning and precipitation strengthening in enhancing the tensile strength at maintained ductility compared to its cast counterpart.This work provides insight into the tunability of the mechanical properties of non-equiatomic HEAs via alloying and thermomechanical processing.展开更多
Relativistic electron beams driven by laser wakefield acceleration were utilized to produce ultrashort neutron sources.The experiment was carried out on the 38 fs,~0.5 J,800 nm Ti:Sapphire laser in the 10 TW UT 3 lase...Relativistic electron beams driven by laser wakefield acceleration were utilized to produce ultrashort neutron sources.The experiment was carried out on the 38 fs,~0.5 J,800 nm Ti:Sapphire laser in the 10 TW UT 3 laser lab at University of Texas at Austin.The target gas was a high density pulsed gas jet composed of 90%He and 10%N 2.The laser pulse with a peak intensity of 1.5×10^(18) W/cm^(2) interacted with the target to create a cylindrical plasma channel of 60 mm radius(FWHM)and 1.5 mm length(FWHM).Electron beams of~80 pC with the Gaussian energy distribution centered at 37 MeV and a width of 30 MeV(FWHM)were produced via laser wakefield acceleration.Neutron fluences of~2.4×10^(6) per shot with hundreds of ps temporal length were generated through bremsstrahlung and subsequent photoneutron reactions in a 26.6 mm thick tungsten converter.Results were compared with those of simulations using EPOCH and GEANT4,showing agreement in electron spectrum,neutron fluence,neutron angular distribution and conversion rate.展开更多
Tensile elastic behavior of bulk Zr46(Cu4.5/5.5Ag1/5.5)46Al8 metallic glass was experimentally investigated. It exhibited linear and non-linear time-independent elastic deformation with a demarcative stress of appro...Tensile elastic behavior of bulk Zr46(Cu4.5/5.5Ag1/5.5)46Al8 metallic glass was experimentally investigated. It exhibited linear and non-linear time-independent elastic deformation with a demarcative stress of approximately 500 MPa within the timescale in the present work, and repeated loading-unloading before yielding did not alter stress-strain relationship. The pure linear elastic strain limit is 0.6%, significantly lower than 2% as generally reported, but still much higher than 0.1% observed for typical crystalline alloys. Deviation from linear elastic behavior at stresses higher than 500 MPa is explained here as a macroscopic manifestation of local fluctuations in elastic strain, which becomes pronounced at stresses higher than the critical value. The occurrence of non-linear elasticity is possibly also related to the sinusoidal relationship between shear stress and atomic displacement.展开更多
Nondestructive cryogenically thermal cycling has been a simple but effective treatment to enhance mechanical properties of glassy materials.However,how the structural heterogeneities on nanometer scales are affected b...Nondestructive cryogenically thermal cycling has been a simple but effective treatment to enhance mechanical properties of glassy materials.However,how the structural heterogeneities on nanometer scales are affected by thermal cycling is still an issue.Here,we report the response of spatial heterogeneities in three selected Ti_(41)Zr_(25)Be_(28)Fe_(6),Zr_(56)Co_(14)Cu_(14)Al_(16)and Zr_(42)Y_(14)Co_(22)Al_(22)(at.%)metallic glasses(MGs)with different compositions to the thermal cycling,which show significantly different structure and properties after the same treatments and could be ascribed to the joint contribution of relaxation and rejuvenation induced by thermal cycling.The rejuvenation is initially prevailed in a Zr-Y-containing MG,whereas the relaxation is dominant in a Cu-Co-containing MG,both eventually entering into a dynamic equilibrium state.By employing nanometer-scale structural models,the intrinsic correlation between the spatial heterogeneity and thermal cycling is proposed.The discovery could provide the fundamental understanding of the role of spatial heterogeneity in influencing the macroscopic properties of MGs via thermal cycling and help design high-performance glassy materials by tailoring their atomic structures with suitable thermal treatments.展开更多
Seemingly contradictory findings between studies are a major issue in nanoecotoxicological research and have been explained as a result of the lack of comparability between assay methods, with dispersion of nanomateri...Seemingly contradictory findings between studies are a major issue in nanoecotoxicological research and have been explained as a result of the lack of comparability between assay methods, with dispersion of nanomaterials being identified as a key factor. Here we show the use of a multivariate method, principal component analysis (PCA), as a tool in protocol development and categorization of dispersion quality. Results show the significance of particle concentration within a protocol, and its effect on repeatability. Our results suggest that future studies should involve the use of PCA as a powerful data exploration tool to facilitate method development, comparability and integration of data across different laboratories.展开更多
We deal with the development of a solidification benchmark experiment in order to investigate the structure formation as well as solute macro-mesosegregation,by means of a well-controlled solidification experiment.The...We deal with the development of a solidification benchmark experiment in order to investigate the structure formation as well as solute macro-mesosegregation,by means of a well-controlled solidification experiment.The experiment consists in solidifying a rectangular ingot of Sn-3wt.%Pb alloy,by using two lateral heat exchangers which allow extraction of the heat flux from one or two vertical sides of the sample.The domain is a quasi two dimensional parallepipedic ingot(100×60×10)mm.The temperature difference AT between the two lateral sides is 40 K and the cooling rate CR=0.03 K/s.The instrumentation consists in recording the instantaneous temperature maps by means of an array of 50 thermocouples in order to provide the time evolution of the isotherms.After each experiment the patterns of the segregations have been obtained by X-ray radiograph and confirmed by eutectic fraction measurements.The local solute distribution determined by means of induction coupled plasma analysis is provided.The originality of the present study is to examine the effect of the forced convection driven by a travelling magnetic field(TMF)induced by a linear inductor located on the bottom part of the sample.A periodically reversed stirring with a modulation frequency equal to 0.5 Hz stirring have been investigated.This study allows us to evaluate the evolution due to the forced convection induced by a TMF field,as well as its influence on the initial conditions,the solidification macrostructure and the segregation behavior.Measurements of the velocity field by ultrasonic Doppler velocimetry(UDV)method in a Ga-In-Sn pool were performed and transposed to the tin-lead alloy case before solidification.Post-mortem patterns of the macromesosegregations have been obtained by X-ray radiography.The results show the transport effects of the flow on both the maerosegregations and the channel formation.The reversal of the TMF produces a decrease of the level of mesosegregations,namely channel formation.展开更多
Dihadron azimuthal correlations containing a high transverse momentum(pr)trigger particle are sensit-ive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the tr...Dihadron azimuthal correlations containing a high transverse momentum(pr)trigger particle are sensit-ive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium,ie.jet-quenching.Previous measurements revealed a strong modification to di-hadron azimuthal correlations in Au+Au collisions with respect to ptp and d+Au collisions.The modification in-creases with the collision centrality,suggesting a path-length or energy density dependence to the je-quenching ef-fect.This paper reports STAR measurements of dihadron azimuthal correlations in mid-central(20%-60%)Au+Au collisions at√^(S)NN=200 GeV as a function of the trigger particle's azimuthal angle relative to the event plane,Ф_(s)=|Ф_(t)-ψ_(Ep)|.The azimuthal correlation is studied as a function of both the trigger and associated particle pr.The subtractions of the combinatorial background and anisotropic flow,assuming Zero Yield At Minimum(ZYAM),are described.The correlation results are first discussed with subtraction of the even harmonic(elliptic and quadrangu-lar)flow backgrounds.The away-side correlation is strongly modifed,and the modification varies withФ_(s),with a double-peak structure for out-of-plane trigger particles.The near-side ridge(long range pseudo-rapidity△_(η)correla-tion)appears to drop with increasingФ_(s)while the jet-like component remains approximately constant.The correla-tion functions are further studied with the subtraction of odd harmonic triangular flow background arising from fluc-tuations.It is found that the triangular flow,while responsible for the majority of the amplitudes,is not sufficient to explain theφs-dependence of the ridge or the away-side double-peak structure.The dropping ridge withФ_(s)could be attributed to aФ_(s)-dependent lliptie anisotropy;however,the physics mechanism of the ridge remains an open ques-tion.Even with aФ_(s)-dependent elliptic flow,the away-side correlation structure is robust.These results,with exte展开更多
A new North Atlantic Oscillation (NAO) index, the NAOI, is defined as the differences of normalized sea level pressures regionally zonal-averaged over a broad range of longitudes 80°W-30°E. A comprehensive c...A new North Atlantic Oscillation (NAO) index, the NAOI, is defined as the differences of normalized sea level pressures regionally zonal-averaged over a broad range of longitudes 80°W-30°E. A comprehensive comparison of six NAO indices indicates that the new NAOI provides a more faithful representation of the spatial-temporal variability associated with the NAO on all timescales. A very high signal-to-noise ratio for the NAOI exists for all seasons, and the life cycle represented by the NAOI describes well the seasonal migration for action centers of the NAO. The NAOI captures a larger fraction of the variance of sea level pressure over the North Atlantic sector (20°-90°N, 80°W-30°E), on average 10% more than any other NAO index. There are quite different relationships between the NAOI and surface air temperature during winter and summer. A novel feature, however, is that the NAOI is significantly negative correlated with surface air temperature over the North Atlantic Ocean between 10°-25°N and 70°-30°W, whether in winter or summer. From 1873, the NAOI exhibits strong interannual and decadal variability. Its interannual variability of the twelve calendar months is obviously phase-locked with the seasonal cycle. Moreover, the annual NAOI exhibits a clearer decadal variability in amplitude than the winter NAOI. An upward trend is found in the annual NAOI between the 1870s and 1910s, while the other winter NAO indices fail to show this tendency. The annual NAOI exhibits a strongly positive epoch of 50 years between 1896 and 1950. After 1950, the variability of the annual NAOI is very similar to that of the winter NAO indices.展开更多
Purpose: To evaluate outcome and toxicity after carbon ion radiotherapy (RT) in skin carcinomas. Patients and Methods: Between November 2006 to September 2008,
The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of...The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.展开更多
Refractory alloys such as tungsten and molybdenum based alloys with high strength,thermal/electrical conductivity,low coefficient of thermal expansion and excellent creep resistances are highly desirable for applicati...Refractory alloys such as tungsten and molybdenum based alloys with high strength,thermal/electrical conductivity,low coefficient of thermal expansion and excellent creep resistances are highly desirable for applications in nuclear facilities,critical components in aerospace and defense components.However,the serious embrittlement limits the engineering usability of some refractory alloys.A lot of research results indicate that the performances of refractory alloys are closely related to the physical/chemical status,such as the interface dimension,interface type,interface composition of their grain boundaries(GBs),phase boundaries(PBs)and other interface features.This paper reviewed the recent progress of simulations and experiments on interface design strategies that achieve high performance refractory alloys.These strategies include GB interface purifying/strengthening,PB interface strengthening and PB/GB synergistic strengthening.Great details are provided on the design/fabrication strategy such as GB interface controlling,PB interface controlling and synergistic control of multi-scaled interfaces.The corresponding performances such as the mechanical property,thermal conductivity,thermal load resistance,thermal stability,irradiation resistance,and oxidation resistance are reviewed in the aspect to the effect of interfaces.In addition,the relationships between these interfaces and material properties are discussed.Finally,future developments and potential new research directions for refractory alloys are proposed.展开更多
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility(SULF).The peak power reaches 2.4 PW on target without the last amplifying...We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility(SULF).The peak power reaches 2.4 PW on target without the last amplifying during the experiment.The laser energy of 72±9 J is directed to a focal spot of approximately 6μm diameter(full width at half maximum)in 30 fs pulse duration,yielding a focused peak intensity around 2.0×10^(21)W/cm^(2).The first laser-proton acceleration experiment is performed using plain copper and plastic targets.High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4μm via target normal sheath acceleration.For plastic targets of tens of nanometers thick,the proton cut-off energy is approximately 20 MeV,showing ring-like or flamented density distributions.These experimental results reflect the capabilities of the SULF-10 PW beamline,for example,both ultrahigh intensity and relatively good beam contrast.Further optimization for these key parameters is underway,where peak laser intensities of 10^(22)-10^(23)w/cm^(2)are anticipated to support various experiments on extreme field physics.展开更多
The homogenized Mg-8.2 Gd-3.8 Y-1.0 Zn-0.4 Zr(wt.%)alloy full of plate-shaped long period stacking ordered(LPSO)phases was hot extruded in the atmosphere and cooled by the forced-air,then the effect of forced-air cool...The homogenized Mg-8.2 Gd-3.8 Y-1.0 Zn-0.4 Zr(wt.%)alloy full of plate-shaped long period stacking ordered(LPSO)phases was hot extruded in the atmosphere and cooled by the forced-air,then the effect of forced-air cooling on the microstructure and age-hardening response of the alloy was investigated in this work.The results show that in comparison with the extruded sample cooling in the atmosphere,the forced-air cooling restricts dynamic recrystallization(DRX)and brings about finer dynamic recrystallized(DRXed)grain size,stronger basal texture and higher dislocation density.Furthermore,the forced-air cooling promotes the dynamic precipitation in the DRXed regions and facilitates formation of plate-shaped LPSO phases andγ’phases with smaller interspacing in the unrecrystallized(un DRXed)regions,then slightly restricts the precipitation ofβphases during aging.After peak-ageing treatment,the extruded sample with forced-air cooling shows superior tensile properties with a tensile yield strength of 439 MPa,an ultimate tensile strength of 493 MPa,and elongation to failure of 18.6%.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51471059)the China Postdoctoral Science Foundation (Grant No. 2014T70328)
文摘Novel Ti6Al4V particles-reinforced AZ91 Mg matrix composites were successfully fabricated by stir casting method. The stirring time in semisolid condition directly affected the particle distribution and the quality of the ingots. Furthermore, the optimal speed of the heating and the liquid stirring could overcome particle settlement caused by the density difference between the matrix and the particles. Ti6Al4V particles distributed uniformly in the composites with different particle contents. The average grain size decreased with the increase in the particle contents. The Ti6A14V particles bonded pretty well with the alloy matrix. In addition, there were some interfacial reactions in the composites. There were rod-like A13Ti phases at the interface. The precipitates extended from the particle surface to the matrix, and they might improve the interfacial bonding strength. The ultimate tensile strength, yield strength and elastic modulus were enhanced as the particle contents increased, and the elongation was much better than that of the same matrix material reinforced with SiC particles. Thus, the novel composites exhibit better comprehensive mechanical properties.
基金financially supported by the National Key Research and Development Program of China(No.2017YFB0304900)。
文摘Gradient boosting decision tree(GBDT)machine learning(ML)method was adopted for the first time to automatically recognize and conduct quantitative statistical analysis of boundaries in bainitic microstructure using electron back-scatter diffraction(EBSD)data.In spite of lack of large sets of EBSD data,we were successful in achieving the desired accuracy and accomplishing the objective of recognizing the boundaries.Compared with a low model accuracy of<50%as using Euler angles or axis-angle pair as characteristic features,the accuracy of the model was significantly enhanced to about 88%when the Euler angle was converted to overall misorientation angle(OMA)and specific misorientation angle(SMA)and considered as important features.In this model,the recall score of prior austenite grain(PAG)boundary was~93%,high angle packet boundary(OMA>40°)was~97%,and block boundary was~96%.The derived outcomes of ML were used to obtain insights into the ductile-to-brittle transition(DBTT)behavior.Interestingly,ML modeling approach suggested that DBTT was not determined by the density of high angle grain boundaries,but significantly influenced by the density of PAG and packet boundaries.The study underscores that ML has a great potential in detailed recognition of complex multi-hierarchical microstructure such as bainite and martensite and relates to material performance.
基金Y.Yang was supported by Research Grant Council(RGC),Hong Kong Government,through General Research Fund(RGC)(Nos.CityU11213118,CityU11200719 and CityU11209317).
文摘High corrosion resistance of alloys is essential for their structural applications;however,most alloys suffer from degradation of their corrosion resistance with the increasing acidity of their surround-ings.Nonetheless,we developed a series of medium-entropy alloys(MEAs)in this work,which ex-hibit high strength,superior fracture toughness and ultra-high corrosion resistance,outperforming the variety of corrosion resistant alloys hitherto reported.Most interestingly,our MEAs exhibit an unusual anti-corrosion behavior and their corrosion resistance increases with acidity in Cl−containing solutions.Through extensive thermodynamic calculations,density functional theory(DFT)simulations and experi-ments,we reveal that the unusual anti-corrosion behavior of our MEAs can be attributed to their surface chemical complexity,which facilitates the physio-chemical-absorption of H_(2)O and O_(2)and thus the rapid formation of metastable medium entropy passive films that contain the lowest amount of defects,as compared to the passive films on conventional alloys reported in the literature.
基金support from the National Science Foundation (NSF) (Grants CBET-1133751 and CBET-1438099)the support from the National Key Technology Support Program of China (Grant 2015BAA06B04)Shanghai Natural Science Foundation (Grant 16ZR1417600)
文摘We examined experimentally the effects of incoming surface wind on the turbine wake and the wake interference among upstream and downstream wind turbines sited in atmospheric boundary layer(ABL) winds. The experiment was conducted in a large-scale ABL wind tunnel with scaled wind turbine models mounted in different incoming surface winds simulating the ABL winds over typical offshore/onshore wind farms. Power outputs and dynamic loadings acting on the turbine models and the wake flow characteristics behind the turbine models were quantified. The results revealed that the incoming surface winds significantly affect the turbine wake characteristics and wake interference between the upstream and downstream turbines. The velocity deficits in the turbine wakes recover faster in the incoming surface winds with relatively high turbulence levels. Variations of the power outputs and dynamic wind loadings acting on the downstream turbines sited in the wakes of upstream turbines are correlated well with the turbine wakes characteristics. At the same downstream locations, the downstream turbines have higher power outputs and experience greater static and fatigue loadings in the inflow with relatively high turbulence level, suggesting a smaller effect of wake interference for the turbines sited in onshore wind farms.
基金financially supported by the National Natural Science Foundation of China(Nos.U1832203,11975202and 51871198)the National Key Research and Development Program of China(Nos.2016YFB0701203,2016YFB0700201,and 2017YFA0403400)+1 种基金the Natural Science Foundation of Zhejiang Province(Nos.Z1110196,Y4110192,and LY15E010003)the Fundamental Research Funds for the Central Universities。
文摘The single-phase face-centered cubic(fcc)-structured Fe_(50)Mn_(27)Ni_(10)Cr_(13) high entropy alloy(HEA)exhibits good ductility but low strength,which presents a challenge.By Mo-alloying and thermomechanical treatments,we have designed the(Fe_(50)Mn_(27)Ni_(10)Cr_(13))_(100-x)Mo_(x)(x=0-6 at.%)alloy series with a wide range of mechanical properties.The careful control of secondary phases introduced in the cold-rolled and annealed(Fe_(50)Mn_(27)Ni_(10)Cr_(13))Mo_(2) sample resulted in an enhanced tensile strength from 250 MPa to 665 MPa,still having~25%ductility.TEM investigations of this alloy revealed the presence of deformation twins,dislocation cells,and ordered bcc na no-pa rticles embedded in the ductile fcc matrix post-deformation.The observed deformation structures are an indication of succes s ful cooperation between deformation twinning and precipitation strengthening in enhancing the tensile strength at maintained ductility compared to its cast counterpart.This work provides insight into the tunability of the mechanical properties of non-equiatomic HEAs via alloying and thermomechanical processing.
基金This paper is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-14-1-0045The project was also supported by the NNSA coop-erative agreement DE-NA0002008the Defense Advanced Research Projects Agency's PULSE program(12-63-PULSE-FP014).
文摘Relativistic electron beams driven by laser wakefield acceleration were utilized to produce ultrashort neutron sources.The experiment was carried out on the 38 fs,~0.5 J,800 nm Ti:Sapphire laser in the 10 TW UT 3 laser lab at University of Texas at Austin.The target gas was a high density pulsed gas jet composed of 90%He and 10%N 2.The laser pulse with a peak intensity of 1.5×10^(18) W/cm^(2) interacted with the target to create a cylindrical plasma channel of 60 mm radius(FWHM)and 1.5 mm length(FWHM).Electron beams of~80 pC with the Gaussian energy distribution centered at 37 MeV and a width of 30 MeV(FWHM)were produced via laser wakefield acceleration.Neutron fluences of~2.4×10^(6) per shot with hundreds of ps temporal length were generated through bremsstrahlung and subsequent photoneutron reactions in a 26.6 mm thick tungsten converter.Results were compared with those of simulations using EPOCH and GEANT4,showing agreement in electron spectrum,neutron fluence,neutron angular distribution and conversion rate.
基金supports from the National Key Basic Research Program of China (No. 2012CB825700)the National Natural Science Foundation of China (Nos. 50701038, 10979002, 51371157 and 11179026)+1 种基金the Natural Science Foundation of Zhejiang Province (Nos. Y4110192 and Z1110196)the Fundamental Research Funds for the Central Universities (2014FZA4006)are gratefully acknowledged
文摘Tensile elastic behavior of bulk Zr46(Cu4.5/5.5Ag1/5.5)46Al8 metallic glass was experimentally investigated. It exhibited linear and non-linear time-independent elastic deformation with a demarcative stress of approximately 500 MPa within the timescale in the present work, and repeated loading-unloading before yielding did not alter stress-strain relationship. The pure linear elastic strain limit is 0.6%, significantly lower than 2% as generally reported, but still much higher than 0.1% observed for typical crystalline alloys. Deviation from linear elastic behavior at stresses higher than 500 MPa is explained here as a macroscopic manifestation of local fluctuations in elastic strain, which becomes pronounced at stresses higher than the critical value. The occurrence of non-linear elasticity is possibly also related to the sinusoidal relationship between shear stress and atomic displacement.
基金the National Natural Science Foundation of China(Nos.U1832203,11975202,51671169,and 51671170)the National Key Research and Development Program of China(Nos.2016YFB0701203,2016YFB0700201 and 2017YFA0403400)+1 种基金the Natural Science Foundation of Zhejiang Province(Nos.LZ20E010002,Z1110196 and Y4110192)the Fundamental Research Funds for the Central Universities。
文摘Nondestructive cryogenically thermal cycling has been a simple but effective treatment to enhance mechanical properties of glassy materials.However,how the structural heterogeneities on nanometer scales are affected by thermal cycling is still an issue.Here,we report the response of spatial heterogeneities in three selected Ti_(41)Zr_(25)Be_(28)Fe_(6),Zr_(56)Co_(14)Cu_(14)Al_(16)and Zr_(42)Y_(14)Co_(22)Al_(22)(at.%)metallic glasses(MGs)with different compositions to the thermal cycling,which show significantly different structure and properties after the same treatments and could be ascribed to the joint contribution of relaxation and rejuvenation induced by thermal cycling.The rejuvenation is initially prevailed in a Zr-Y-containing MG,whereas the relaxation is dominant in a Cu-Co-containing MG,both eventually entering into a dynamic equilibrium state.By employing nanometer-scale structural models,the intrinsic correlation between the spatial heterogeneity and thermal cycling is proposed.The discovery could provide the fundamental understanding of the role of spatial heterogeneity in influencing the macroscopic properties of MGs via thermal cycling and help design high-performance glassy materials by tailoring their atomic structures with suitable thermal treatments.
基金Framework 7 Projects(MARINA and NanoReg)DEFRA for providing funding for this study
文摘Seemingly contradictory findings between studies are a major issue in nanoecotoxicological research and have been explained as a result of the lack of comparability between assay methods, with dispersion of nanomaterials being identified as a key factor. Here we show the use of a multivariate method, principal component analysis (PCA), as a tool in protocol development and categorization of dispersion quality. Results show the significance of particle concentration within a protocol, and its effect on repeatability. Our results suggest that future studies should involve the use of PCA as a powerful data exploration tool to facilitate method development, comparability and integration of data across different laboratories.
基金Item Sponsored by European Space Agency through the CETSOL project (ESA-MAP AO-99-117) as well as the SMACS ANR project
文摘We deal with the development of a solidification benchmark experiment in order to investigate the structure formation as well as solute macro-mesosegregation,by means of a well-controlled solidification experiment.The experiment consists in solidifying a rectangular ingot of Sn-3wt.%Pb alloy,by using two lateral heat exchangers which allow extraction of the heat flux from one or two vertical sides of the sample.The domain is a quasi two dimensional parallepipedic ingot(100×60×10)mm.The temperature difference AT between the two lateral sides is 40 K and the cooling rate CR=0.03 K/s.The instrumentation consists in recording the instantaneous temperature maps by means of an array of 50 thermocouples in order to provide the time evolution of the isotherms.After each experiment the patterns of the segregations have been obtained by X-ray radiograph and confirmed by eutectic fraction measurements.The local solute distribution determined by means of induction coupled plasma analysis is provided.The originality of the present study is to examine the effect of the forced convection driven by a travelling magnetic field(TMF)induced by a linear inductor located on the bottom part of the sample.A periodically reversed stirring with a modulation frequency equal to 0.5 Hz stirring have been investigated.This study allows us to evaluate the evolution due to the forced convection induced by a TMF field,as well as its influence on the initial conditions,the solidification macrostructure and the segregation behavior.Measurements of the velocity field by ultrasonic Doppler velocimetry(UDV)method in a Ga-In-Sn pool were performed and transposed to the tin-lead alloy case before solidification.Post-mortem patterns of the macromesosegregations have been obtained by X-ray radiography.The results show the transport effects of the flow on both the maerosegregations and the channel formation.The reversal of the TMF produces a decrease of the level of mesosegregations,namely channel formation.
基金Supported in part by the Offices of NP and HEP within the U.S.DOE Office of Sciencethe U.S.NSF+18 种基金the Sloan Foundationthe DFG cluster of excellence‘Origin and Structure of the Universe’of Germany,CNRS/IN2P3STFC and EPSRC of the United KingdomFAPESP CNPq of Brazil,Ministry of Ed.Sci.of the Russian FederationNNSFCCASMoSTMoE of ChinaGA and MSMT of the Czech RepublicFOM and NWO of the NetherlandsDAEDSTCSIR of IndiaPolish Ministry of Sci.Higher Ed.,Korea Research Foundation,Ministry of Sci.,Ed.Sports of the Rep.Of CroatiaRussian Ministry of Sci.and TechRos-Atom of Russia。
文摘Dihadron azimuthal correlations containing a high transverse momentum(pr)trigger particle are sensit-ive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium,ie.jet-quenching.Previous measurements revealed a strong modification to di-hadron azimuthal correlations in Au+Au collisions with respect to ptp and d+Au collisions.The modification in-creases with the collision centrality,suggesting a path-length or energy density dependence to the je-quenching ef-fect.This paper reports STAR measurements of dihadron azimuthal correlations in mid-central(20%-60%)Au+Au collisions at√^(S)NN=200 GeV as a function of the trigger particle's azimuthal angle relative to the event plane,Ф_(s)=|Ф_(t)-ψ_(Ep)|.The azimuthal correlation is studied as a function of both the trigger and associated particle pr.The subtractions of the combinatorial background and anisotropic flow,assuming Zero Yield At Minimum(ZYAM),are described.The correlation results are first discussed with subtraction of the even harmonic(elliptic and quadrangu-lar)flow backgrounds.The away-side correlation is strongly modifed,and the modification varies withФ_(s),with a double-peak structure for out-of-plane trigger particles.The near-side ridge(long range pseudo-rapidity△_(η)correla-tion)appears to drop with increasingФ_(s)while the jet-like component remains approximately constant.The correla-tion functions are further studied with the subtraction of odd harmonic triangular flow background arising from fluc-tuations.It is found that the triangular flow,while responsible for the majority of the amplitudes,is not sufficient to explain theφs-dependence of the ridge or the away-side double-peak structure.The dropping ridge withФ_(s)could be attributed to aФ_(s)-dependent lliptie anisotropy;however,the physics mechanism of the ridge remains an open ques-tion.Even with aФ_(s)-dependent elliptic flow,the away-side correlation structure is robust.These results,with exte
基金supported jointly by the NOAA Arctic Research,CAS Project ZKCX2-SW-210the National Natural Science Foundation of China(Grant No.40275025)
文摘A new North Atlantic Oscillation (NAO) index, the NAOI, is defined as the differences of normalized sea level pressures regionally zonal-averaged over a broad range of longitudes 80°W-30°E. A comprehensive comparison of six NAO indices indicates that the new NAOI provides a more faithful representation of the spatial-temporal variability associated with the NAO on all timescales. A very high signal-to-noise ratio for the NAOI exists for all seasons, and the life cycle represented by the NAOI describes well the seasonal migration for action centers of the NAO. The NAOI captures a larger fraction of the variance of sea level pressure over the North Atlantic sector (20°-90°N, 80°W-30°E), on average 10% more than any other NAO index. There are quite different relationships between the NAOI and surface air temperature during winter and summer. A novel feature, however, is that the NAOI is significantly negative correlated with surface air temperature over the North Atlantic Ocean between 10°-25°N and 70°-30°W, whether in winter or summer. From 1873, the NAOI exhibits strong interannual and decadal variability. Its interannual variability of the twelve calendar months is obviously phase-locked with the seasonal cycle. Moreover, the annual NAOI exhibits a clearer decadal variability in amplitude than the winter NAOI. An upward trend is found in the annual NAOI between the 1870s and 1910s, while the other winter NAO indices fail to show this tendency. The annual NAOI exhibits a strongly positive epoch of 50 years between 1896 and 1950. After 1950, the variability of the annual NAOI is very similar to that of the winter NAO indices.
文摘Purpose: To evaluate outcome and toxicity after carbon ion radiotherapy (RT) in skin carcinomas. Patients and Methods: Between November 2006 to September 2008,
基金This work was supported by the National Natural Science Foundation of China[grant numbers 51671066,51771129,51771128]the“Natural Science Foundation of Shanxi”[grant number 2015021067].
基金supported by the National Key R&D Program of China under Contract No.2022YFA1602200the International Partnership Program of the Chineses Academy of Sciences under Grant No.211134KYSB20200057the STCF Key Technology Research and Development Project.
文摘The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.:51771184,11735015,51801203,51771181)the Natural Science Foundation of Anhui Province(Grant No.1808085QE132)+2 种基金the Open Project of State Key Laboratory of Environment friendly Energy Materials(18kfhg02)a fund from the Science and Technology on Surface Physics and Chemistry Laboratory(Grant No.JZX7Y201901SY00900103)the Innovation Center of Nuclear Materials for National Defense Industry。
文摘Refractory alloys such as tungsten and molybdenum based alloys with high strength,thermal/electrical conductivity,low coefficient of thermal expansion and excellent creep resistances are highly desirable for applications in nuclear facilities,critical components in aerospace and defense components.However,the serious embrittlement limits the engineering usability of some refractory alloys.A lot of research results indicate that the performances of refractory alloys are closely related to the physical/chemical status,such as the interface dimension,interface type,interface composition of their grain boundaries(GBs),phase boundaries(PBs)and other interface features.This paper reviewed the recent progress of simulations and experiments on interface design strategies that achieve high performance refractory alloys.These strategies include GB interface purifying/strengthening,PB interface strengthening and PB/GB synergistic strengthening.Great details are provided on the design/fabrication strategy such as GB interface controlling,PB interface controlling and synergistic control of multi-scaled interfaces.The corresponding performances such as the mechanical property,thermal conductivity,thermal load resistance,thermal stability,irradiation resistance,and oxidation resistance are reviewed in the aspect to the effect of interfaces.In addition,the relationships between these interfaces and material properties are discussed.Finally,future developments and potential new research directions for refractory alloys are proposed.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB16)the National Natural Science Foundation of China(Nos.11875307,11935008,11804348,11705260,11905278 and 11975302)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2021242).
文摘We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility(SULF).The peak power reaches 2.4 PW on target without the last amplifying during the experiment.The laser energy of 72±9 J is directed to a focal spot of approximately 6μm diameter(full width at half maximum)in 30 fs pulse duration,yielding a focused peak intensity around 2.0×10^(21)W/cm^(2).The first laser-proton acceleration experiment is performed using plain copper and plastic targets.High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4μm via target normal sheath acceleration.For plastic targets of tens of nanometers thick,the proton cut-off energy is approximately 20 MeV,showing ring-like or flamented density distributions.These experimental results reflect the capabilities of the SULF-10 PW beamline,for example,both ultrahigh intensity and relatively good beam contrast.Further optimization for these key parameters is underway,where peak laser intensities of 10^(22)-10^(23)w/cm^(2)are anticipated to support various experiments on extreme field physics.
基金financially supported by the National Natural Science Foundation for Young Scientists of China(Nos.51801042 and 51704088)the National Natural Science Foundation(Nos.51971075 and 51775150)+2 种基金the Fundamental Research Funds for the Central Universitiesthe JST Advanced Low Carbon Technology Researchthe Development Program(ALCA)(No.12102886)。
文摘The homogenized Mg-8.2 Gd-3.8 Y-1.0 Zn-0.4 Zr(wt.%)alloy full of plate-shaped long period stacking ordered(LPSO)phases was hot extruded in the atmosphere and cooled by the forced-air,then the effect of forced-air cooling on the microstructure and age-hardening response of the alloy was investigated in this work.The results show that in comparison with the extruded sample cooling in the atmosphere,the forced-air cooling restricts dynamic recrystallization(DRX)and brings about finer dynamic recrystallized(DRXed)grain size,stronger basal texture and higher dislocation density.Furthermore,the forced-air cooling promotes the dynamic precipitation in the DRXed regions and facilitates formation of plate-shaped LPSO phases andγ’phases with smaller interspacing in the unrecrystallized(un DRXed)regions,then slightly restricts the precipitation ofβphases during aging.After peak-ageing treatment,the extruded sample with forced-air cooling shows superior tensile properties with a tensile yield strength of 439 MPa,an ultimate tensile strength of 493 MPa,and elongation to failure of 18.6%.