Internet of Things(IoT)security is the act of securing IoT devices and networks.IoT devices,including industrial machines,smart energy grids,and building automation,are extremely vulnerable.With the goal of shielding ...Internet of Things(IoT)security is the act of securing IoT devices and networks.IoT devices,including industrial machines,smart energy grids,and building automation,are extremely vulnerable.With the goal of shielding network systems from illegal access in cloud servers and IoT systems,Intrusion Detection Systems(IDSs)and Network-based Intrusion Prevention Systems(NBIPSs)are proposed in this study.An intrusion prevention system is proposed to realize NBIPS to safeguard top to bottom engineering.The proposed NBIPS inspects network activity streams to identify and counteract misuse instances.The NBIPS is usually located specifically behind a firewall,and it provides a reciprocal layer of investigation that adversely chooses unsafe substances.Networkbased IPS sensors can be installed either in an inline or a passive model.An inline sensor is installed to monitor the traffic passing through it.The sensors are installed to stop attacks by blocking the traffic using an IoT signature-based protocol.展开更多
The effect of Zr doping in Ni 3Al and B doping in Co 3Ti intermetallics on the sensitivity to moisture induced environmental embrittlement and on the hydrogen diffusivity was investigated. The results show that both B...The effect of Zr doping in Ni 3Al and B doping in Co 3Ti intermetallics on the sensitivity to moisture induced environmental embrittlement and on the hydrogen diffusivity was investigated. The results show that both B in Co 3Ti and Zr in Ni 3Al do not reduce the hydrogen diffusivity along the grain boundaries, therefore can not suppress the moisture induced environmental embrittlement. The above mentioned behavior of Zr in Ni 3Al and B in Co 3Ti is attributed to the fact that Zr and B are not segregated on the grain boundaries.展开更多
Atomized, pre-alloyed Ti-24Nb-4Zr-7.9Sn (wt%) powder was used to fabricate solid, prototype components by electron beam melting (EBM). Vickers microindentation hardness values were observed to average 2 GPa for th...Atomized, pre-alloyed Ti-24Nb-4Zr-7.9Sn (wt%) powder was used to fabricate solid, prototype components by electron beam melting (EBM). Vickers microindentation hardness values were observed to average 2 GPa for the precursor powder and 2.5 GPa for the solid, EBM-fabricated products. The powder and solid product microstructures were examined by optical and electron microscopy. X-ray diffraction analyses showed that they had bcc β-phase microstructure. However, it was found by transmission electron microscopy that the EBM-fabricated product had plate morphology with space -100-200 nm. Although the corresponding selected area diffraction patterns can be indexed by β-phase plus α"-martensite with orthorhombic crystal structure, the dark-field analyses failed to observe the α"-martensite. Such phenomenon was also found in deformed gum metals and explained by stress-induced diffusion scattering due to phonon softening.展开更多
The effects of atmosphere conditions on microstructural and mechanical properties of stainless steel 17-4PH components fabricated by laser direct manufacturing (LDM) were investigated through mea-surements on phase co...The effects of atmosphere conditions on microstructural and mechanical properties of stainless steel 17-4PH components fabricated by laser direct manufacturing (LDM) were investigated through mea-surements on phase constitution, porosity, tensile strength, fracture morphology, hardness and evolution of substrate temperature. Results showed that the samples produced in air atmosphere condition pos-sessed higher tensile strength and hardness for both as-deposited and heat-treated states than that in Ar chamber condition, due to dispersion strengthening effect of amorphous oxide particles and nitrogen solution strengthening as a result of higher content of oxygen and nitrogen. The temperature of substrate heat accumulation was higher in Ar chamber condition, leading to dramatically lower porosity and more reverse austenite, which also contributed to the lower strength and hardness.展开更多
The CeVO_4/graphitic C_3N_4 composites have exhibited much enhanced photocatalytic property for degrading methylene blue(MB) pollutant under visible light irradiation compared with single-phase g-C_3N_4 or CeVO_4. The...The CeVO_4/graphitic C_3N_4 composites have exhibited much enhanced photocatalytic property for degrading methylene blue(MB) pollutant under visible light irradiation compared with single-phase g-C_3N_4 or CeVO_4. The composite S5 obtained from an optimized mass ratio(5%) of CeVO_4 to dicyanamide(DCDA) exhibits the highest photocatalytic activity. Here, ternary Ag/CeVO_4/g-C_3N_4 composites denoted as X%Ag/S5 were prepared by an ultrasonic precipitation method to improve the photocatalytic property of S5. The TEM images show that CeVO_4 and Ag nanoparticles are well distributed on the layered g-C_3N_4, which agree well with the XRD results. The UV spectra show that the 7%Ag/S5 sample has the widest absorption range and the enhanced absorption intensity under visible light irradiation. The corresponding band gap of 7%Ag/S5(2.5 eV) is much lower than that of S5(2.65 eV). The corresponding k value of 7%Ag/S5 is much higher than those of g-C_3N_4 and CeVO_4. The degradation experiments for MB solution suggest that the 7%Ag/S5 sample has the optimal photocatalytic performance, which can degrade MB solution completely within 120 min. The enhanced photocatalytic property of the composites is ascribed to not only the effect of heterojunction structure, but also the surface plasma resonance effect of Ag nanoparticles.展开更多
Damage smear method(DSM)is adopted to study trans-scale progressive rock failure process,based on statistical meso-damage model and finite element solver.The statistical approach is utilized to reflect the mesoscopic ...Damage smear method(DSM)is adopted to study trans-scale progressive rock failure process,based on statistical meso-damage model and finite element solver.The statistical approach is utilized to reflect the mesoscopic rock heterogeneity.The constitutive law of representative volume element(RVE)is established according to continuum damage mechanics in which double-damage criterion is considered.The damage evolution and accumulation of RVEs are used to reveal the macroscopic rock failure characteristics.Each single RVE will be represented by one unique element.The initiation,propagation and coalescence of meso-to macro-cracks are captured by smearing failed elements.The above ideas are formulated into the framework of the DSM and programed into self-developed rock failure process analysis(RFPA)software.Two laboratory-scale examples are conducted and the well-known engineering-scale tests,i.e.Atomic Energy of Canada Limited’s(AECL’s)Underground Research Laboratory(URL)tests,are used for verification.It shows that the simulation results match with other experimental results and field observations.展开更多
A novel Z-scheme graphitic C_(3)N_(4)/reduced TiO_(2)microsphere(g-C_(3)N_(4)/r-TiO_(2))has been successfully synthesized by a solvothermal method.The as-prepared samples with different contents of g-C_(3)N_(4)were ch...A novel Z-scheme graphitic C_(3)N_(4)/reduced TiO_(2)microsphere(g-C_(3)N_(4)/r-TiO_(2))has been successfully synthesized by a solvothermal method.The as-prepared samples with different contents of g-C_(3)N_(4)were characterized by X-ray diffraction,electron paramagnetic resonance,scanning electron microscope,UV evis.diffuse reflectance and photoluminescence spectra.The r-TiO_(2)microspheres are aggregated on the surface of g-C_(3)N_(4)sheets in the as-prepared g-C_(3)N_(4)/r-TiO_(2)composites.All g-C_(3)N_(4)/r-TiO_(2)catalysts show enhanced photocatalytic activity for the degradation of rhodamine B under visible light irradiation.It could be attributed to these influences of oxygen vacancy(changing the band gap of TiO_(2)),the large specific surface area(providing much more active sites for photocatalytic reaction),and the synergetic effect between g-C_(3)N_(4)and r-TiO_(2)(promoting the separation for photoinduced electron-hole pairs).Moreover,the Z-scheme carriers transfer mechanism in the photocatalytic process has been discussed through trapping experiments of active species.The work demonstrates the strategies of the construction of Z-scheme carriers transfer system,the introduction of oxygen vacancy and structure designing are beneficial to design materials toward solar energy conversion like contaminant degradation.展开更多
On the basis of analyses of service conditions and properties requirements of wood chip cutting knives, an alloying scheme was formulated and a kind of new tool steel was developed. Parameters for its heat treati...On the basis of analyses of service conditions and properties requirements of wood chip cutting knives, an alloying scheme was formulated and a kind of new tool steel was developed. Parameters for its heat treating process and mechanical properties were systematically investigated and optimized. Satisfactory results were obtained on the knives in practice.展开更多
The superplastic deformation characteristics, of commercial 40Cr (i.e., 5140) steel that was water-quenched only 1 times and subsequent high-temperature tempered, were investigated. The results showed that the 40Cr st...The superplastic deformation characteristics, of commercial 40Cr (i.e., 5140) steel that was water-quenched only 1 times and subsequent high-temperature tempered, were investigated. The results showed that the 40Cr steel has a fine grain of 10-15μm at room temperature, and exhibits a tensile elongation of 304%, a true flow stress of 89.3MPa and a strain rate sensitivity m-value of 0.227 at the initial strain rate of 1.0×10-3s-1and at the temperature of 750°C. The final fracture is caused by the development of neck. The experimental result of elongation is in good agreement with the theoretically predicated value according to the analytical expression (where ef, m, f, nv and ε is respectively elongation, average strain rate sensitivity, initial geometric defect, average strain hardening sensitivity at constant deformation velocity and average true strain). The fracture surface is intergraular, and superplastic deformation induces an equiaxed and grown grain. Decreasing strain rate increases tensile elongation and strain rate sensitivity m-value. The primary superplastic deformation mechanism is thought to be atom-diffusion-controlled grain boundary sliding.展开更多
基金specific grant from any funding agency in public,commercial or not-for-profit sectors.
文摘Internet of Things(IoT)security is the act of securing IoT devices and networks.IoT devices,including industrial machines,smart energy grids,and building automation,are extremely vulnerable.With the goal of shielding network systems from illegal access in cloud servers and IoT systems,Intrusion Detection Systems(IDSs)and Network-based Intrusion Prevention Systems(NBIPSs)are proposed in this study.An intrusion prevention system is proposed to realize NBIPS to safeguard top to bottom engineering.The proposed NBIPS inspects network activity streams to identify and counteract misuse instances.The NBIPS is usually located specifically behind a firewall,and it provides a reciprocal layer of investigation that adversely chooses unsafe substances.Networkbased IPS sensors can be installed either in an inline or a passive model.An inline sensor is installed to monitor the traffic passing through it.The sensors are installed to stop attacks by blocking the traffic using an IoT signature-based protocol.
文摘The effect of Zr doping in Ni 3Al and B doping in Co 3Ti intermetallics on the sensitivity to moisture induced environmental embrittlement and on the hydrogen diffusivity was investigated. The results show that both B in Co 3Ti and Zr in Ni 3Al do not reduce the hydrogen diffusivity along the grain boundaries, therefore can not suppress the moisture induced environmental embrittlement. The above mentioned behavior of Zr in Ni 3Al and B in Co 3Ti is attributed to the fact that Zr and B are not segregated on the grain boundaries.
基金supportcd in part by Murchison Endowed Chairs at UTEPan MOST Grant 2012CB933901 at IMR
文摘Atomized, pre-alloyed Ti-24Nb-4Zr-7.9Sn (wt%) powder was used to fabricate solid, prototype components by electron beam melting (EBM). Vickers microindentation hardness values were observed to average 2 GPa for the precursor powder and 2.5 GPa for the solid, EBM-fabricated products. The powder and solid product microstructures were examined by optical and electron microscopy. X-ray diffraction analyses showed that they had bcc β-phase microstructure. However, it was found by transmission electron microscopy that the EBM-fabricated product had plate morphology with space -100-200 nm. Although the corresponding selected area diffraction patterns can be indexed by β-phase plus α"-martensite with orthorhombic crystal structure, the dark-field analyses failed to observe the α"-martensite. Such phenomenon was also found in deformed gum metals and explained by stress-induced diffusion scattering due to phonon softening.
基金financial support from National Key Research and Development Program of China [grant number 2016YFB1100203]Key Research and Development Program of Jiangxi Province [grant numbers 20171BBE50022, 20151BBE51065]+1 种基金Scientific Research Special Funds of Jiangxi Academy of Sciences [grant numbers 2014-XTPH1-16, 2014-YYB16]Key Research Project of Jiangxi Academy of Sciences [grant number 2016-YZD2-01]
文摘The effects of atmosphere conditions on microstructural and mechanical properties of stainless steel 17-4PH components fabricated by laser direct manufacturing (LDM) were investigated through mea-surements on phase constitution, porosity, tensile strength, fracture morphology, hardness and evolution of substrate temperature. Results showed that the samples produced in air atmosphere condition pos-sessed higher tensile strength and hardness for both as-deposited and heat-treated states than that in Ar chamber condition, due to dispersion strengthening effect of amorphous oxide particles and nitrogen solution strengthening as a result of higher content of oxygen and nitrogen. The temperature of substrate heat accumulation was higher in Ar chamber condition, leading to dramatically lower porosity and more reverse austenite, which also contributed to the lower strength and hardness.
基金supported by National Natural Science Foundation of China(No.51502116)the Six Talents Peak Project in Jiangsu Province(No.2011-ZBZZ045)+2 种基金Natural Science Foundation of Jiangsu Province(No.BK20140557)Special Funding of China Postdoctoral Science Foundation(No.2016T90425)China Postdoctoral Science Foundation(No.2015M571682)
文摘The CeVO_4/graphitic C_3N_4 composites have exhibited much enhanced photocatalytic property for degrading methylene blue(MB) pollutant under visible light irradiation compared with single-phase g-C_3N_4 or CeVO_4. The composite S5 obtained from an optimized mass ratio(5%) of CeVO_4 to dicyanamide(DCDA) exhibits the highest photocatalytic activity. Here, ternary Ag/CeVO_4/g-C_3N_4 composites denoted as X%Ag/S5 were prepared by an ultrasonic precipitation method to improve the photocatalytic property of S5. The TEM images show that CeVO_4 and Ag nanoparticles are well distributed on the layered g-C_3N_4, which agree well with the XRD results. The UV spectra show that the 7%Ag/S5 sample has the widest absorption range and the enhanced absorption intensity under visible light irradiation. The corresponding band gap of 7%Ag/S5(2.5 eV) is much lower than that of S5(2.65 eV). The corresponding k value of 7%Ag/S5 is much higher than those of g-C_3N_4 and CeVO_4. The degradation experiments for MB solution suggest that the 7%Ag/S5 sample has the optimal photocatalytic performance, which can degrade MB solution completely within 120 min. The enhanced photocatalytic property of the composites is ascribed to not only the effect of heterojunction structure, but also the surface plasma resonance effect of Ag nanoparticles.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.51679028 and 51879034)Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (Grant No. SKLGDUEK1804)the Fundamental Research Funds for the Central Universities (Grant No.DUT18JC10)
文摘Damage smear method(DSM)is adopted to study trans-scale progressive rock failure process,based on statistical meso-damage model and finite element solver.The statistical approach is utilized to reflect the mesoscopic rock heterogeneity.The constitutive law of representative volume element(RVE)is established according to continuum damage mechanics in which double-damage criterion is considered.The damage evolution and accumulation of RVEs are used to reveal the macroscopic rock failure characteristics.Each single RVE will be represented by one unique element.The initiation,propagation and coalescence of meso-to macro-cracks are captured by smearing failed elements.The above ideas are formulated into the framework of the DSM and programed into self-developed rock failure process analysis(RFPA)software.Two laboratory-scale examples are conducted and the well-known engineering-scale tests,i.e.Atomic Energy of Canada Limited’s(AECL’s)Underground Research Laboratory(URL)tests,are used for verification.It shows that the simulation results match with other experimental results and field observations.
基金This work is supported by Six Talents Peak Project in Jiangsu Province(2011-ZBZZ045)Jiangsu Province Ordinary University Graduate Student Innovation Project(201710299111H).
文摘A novel Z-scheme graphitic C_(3)N_(4)/reduced TiO_(2)microsphere(g-C_(3)N_(4)/r-TiO_(2))has been successfully synthesized by a solvothermal method.The as-prepared samples with different contents of g-C_(3)N_(4)were characterized by X-ray diffraction,electron paramagnetic resonance,scanning electron microscope,UV evis.diffuse reflectance and photoluminescence spectra.The r-TiO_(2)microspheres are aggregated on the surface of g-C_(3)N_(4)sheets in the as-prepared g-C_(3)N_(4)/r-TiO_(2)composites.All g-C_(3)N_(4)/r-TiO_(2)catalysts show enhanced photocatalytic activity for the degradation of rhodamine B under visible light irradiation.It could be attributed to these influences of oxygen vacancy(changing the band gap of TiO_(2)),the large specific surface area(providing much more active sites for photocatalytic reaction),and the synergetic effect between g-C_(3)N_(4)and r-TiO_(2)(promoting the separation for photoinduced electron-hole pairs).Moreover,the Z-scheme carriers transfer mechanism in the photocatalytic process has been discussed through trapping experiments of active species.The work demonstrates the strategies of the construction of Z-scheme carriers transfer system,the introduction of oxygen vacancy and structure designing are beneficial to design materials toward solar energy conversion like contaminant degradation.
文摘On the basis of analyses of service conditions and properties requirements of wood chip cutting knives, an alloying scheme was formulated and a kind of new tool steel was developed. Parameters for its heat treating process and mechanical properties were systematically investigated and optimized. Satisfactory results were obtained on the knives in practice.
文摘The superplastic deformation characteristics, of commercial 40Cr (i.e., 5140) steel that was water-quenched only 1 times and subsequent high-temperature tempered, were investigated. The results showed that the 40Cr steel has a fine grain of 10-15μm at room temperature, and exhibits a tensile elongation of 304%, a true flow stress of 89.3MPa and a strain rate sensitivity m-value of 0.227 at the initial strain rate of 1.0×10-3s-1and at the temperature of 750°C. The final fracture is caused by the development of neck. The experimental result of elongation is in good agreement with the theoretically predicated value according to the analytical expression (where ef, m, f, nv and ε is respectively elongation, average strain rate sensitivity, initial geometric defect, average strain hardening sensitivity at constant deformation velocity and average true strain). The fracture surface is intergraular, and superplastic deformation induces an equiaxed and grown grain. Decreasing strain rate increases tensile elongation and strain rate sensitivity m-value. The primary superplastic deformation mechanism is thought to be atom-diffusion-controlled grain boundary sliding.