期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
On the Data-Driven Materials Innovation Infrastructure 被引量:8
1
作者 Hong Wang x.-D.xiang Lanting Zhang 《Engineering》 SCIE EI 2020年第6期609-611,共3页
In recent years,material genome has been a hot topic in the field of material science.The emergence of the term“material genome”was largely inspired by the successful Human Genome Project.Trad让ionally,the discovery... In recent years,material genome has been a hot topic in the field of material science.The emergence of the term“material genome”was largely inspired by the successful Human Genome Project.Trad让ionally,the discovery and development of new materials and new processes depend on scientific intuition and a lengthy trial-and-error process.For years,material scientists have been longing to find some sort of basic building blocks whose structure and defects may determine the properties of materials,similar to the genome in the field of biology. 展开更多
关键词 process. MATERIAL FIELD
下载PDF
An integrated machine learning model for accurate and robust prediction of superconducting critical temperature
2
作者 Jingzi Zhang Ke Zhang +8 位作者 Shaomeng xu Yi Li Chengquan Zhong Mengkun Zhao Hua-Jun Qiu Mingyang Qin x.-D.xiang Kailong Hu xi Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期232-239,I0007,共9页
Discovering new superconductors via traditional trial-and-error experimental approaches is apparently a time-consuming process,and the correlations between the critical temperature(Tc) and material features are still ... Discovering new superconductors via traditional trial-and-error experimental approaches is apparently a time-consuming process,and the correlations between the critical temperature(Tc) and material features are still obscure.The rise of machine learning(ML) technology provides new opportunities to speed up inefficient exploration processes,and could potentially uncover new hints on the unclear correlations.In this work,we utilize open-source materials data,ML models,and data mining methods to explore the correlation between the chemical features and Tcvalues of superconducting materials.To further improve the prediction accuracy,a new model is created by integrating three basic algorithms,showing an enhanced accuracy with the coefficient of determination(R2) score of 95.9 % and root mean square error(RMSE) of 6.3 K.The average marginal contributions of material features towards Tcvalues are estimated to determine the importance of various features during prediction processes.The results suggest that the range thermal conductivity plays a critical role in Tcprediction among all element features.Furthermore,the integrated ML model is utilized to screen out potential twenty superconducting materials with Tcvalues beyond 50.0 K.This study provides insights towards Tcprediction to accelerate the exploration of potential high-Tcsuperconductors. 展开更多
关键词 SUPERCONDUCTORS Integrated machine learning Superconducting critical temperature
下载PDF
Unveiling the mechanism of non-conventional superconductivity through material genome engineering
3
作者 x.-D.xiang 《Frontiers of physics》 SCIE CSCD 2022年第3期7-8,共2页
Studying the complexity of the electronic phase diagram is at the heart of understanding strongly correlated system in general,with high Tc superconductors as the most known examples.High temperature superconductivity... Studying the complexity of the electronic phase diagram is at the heart of understanding strongly correlated system in general,with high Tc superconductors as the most known examples.High temperature superconductivity has a wide range of application potentials in power transmission,nuclear magnetic resonance,magnetic levitation transportation,aerospace,information and communication technologies,etc.Understanding its mechanism remains a long-standing challenge,due to its complex material structures and interlays among different phases such as charge density wave,antiferromagnetic and superconducting phases.As a result,this has greatly hindered its further development. 展开更多
关键词 MECHANISM SUPERCONDUCTIVITY MAGNETIC
原文传递
High-Throughput Powder Diffraction Using White X-Ray Beam and a Simulated Energy-Dispersive Array Detector
4
作者 xiaoping Wang Weiwei Dong +6 位作者 Peng Zhang Haoqi Tang Lanting Zhang Tieying Yang Peng Liu Hong Wang x.-D.xiang 《Engineering》 SCIE EI 2022年第3期81-88,共8页
High-throughput powder X-ray diffraction(XRD)with white X-ray beam and an energy-dispersive detector array is demonstrated in this work on a CeO;powder sample on a bending magnet synchrotron beamline at the Shanghai S... High-throughput powder X-ray diffraction(XRD)with white X-ray beam and an energy-dispersive detector array is demonstrated in this work on a CeO;powder sample on a bending magnet synchrotron beamline at the Shanghai Synchrotron Radiation Facility(SSRF),using a simulated energy-dispersive array detector consisting of a spatially scanning silicon-drift detector(SDD).Careful analysis and corrections are applied to account for various experimental hardware-related and diffraction angle-related factors.The resulting diffraction patterns show that the relative strength between different diffraction peaks from energy-dispersive XRD(EDXRD)spectra is consistent with that from angle-resolved XRD(ARXRD),which is necessary for analyzing crystal structures for unknown samples.The X-ray fluorescence(XRF)signal is collected simultaneously.XRF counts from all pixels are integrated directly by energy,while the diffraction spectra are integrated by d-spacing,resulting in a much improved peak strength and signal-to-noise(S/N)ratio for the array detector.In comparison with ARXRD,the diffraction signal generated by a white X-ray beam over monochromic light under the experimental conditions is about 104 times higher.The full width at half maximum(FWHM)of the peaks in q-space is found to be dependent on the energy resolution of the detector,the angle span of the detector,and the diffraction angle.It is possible for EDXRD to achieve the same or even smaller FWHM as ARXRD under the energy resolution of the current detector if the experimental parameters are properly chosen. 展开更多
关键词 High-throughput experiment White beam X-ray diffraction Energy-dispersive array detector Energy-dispersive X-ray diffraction Angle-resolved X-ray diffraction
下载PDF
2014-2015年河北省5岁以下婴幼儿病毒性腹泻病原学监测及流行特征分析 被引量:9
5
作者 于秋丽 刘莹莹 +3 位作者 苏通 赵文娜 谢赟 齐顺祥 《国际病毒学杂志》 2016年第5期291-296,共6页
目的 了解河北省5岁以下婴幼儿病毒性腹泻病原构成及流行特点,为病毒性腹泻的防治提供参考依据.方法 收集河北省哨点医院2014年1月-2015年12月0-59月龄腹泻患儿粪便标本686份,同时填写个案调查表,采用ELISA方法检测轮状病毒(HRV),采用... 目的 了解河北省5岁以下婴幼儿病毒性腹泻病原构成及流行特点,为病毒性腹泻的防治提供参考依据.方法 收集河北省哨点医院2014年1月-2015年12月0-59月龄腹泻患儿粪便标本686份,同时填写个案调查表,采用ELISA方法检测轮状病毒(HRV),采用PCR或RT-PCR法检测杯状病毒(HuCV)、星状病毒(HAstV)和肠道腺病毒(HAdV),并对轮状和杯状阳性标本进行分型鉴定.结果 686份标本病毒性病原总检出率64.14% (440/686),2014年62.71%(222/354),稍低于2015年的65.66% (218/332) (x2=0.649,P=0.421),其中单纯轮状、杯状、星状和肠道腺病毒检出率分别为35.13%(241/686)、11.37%(78/686)、1.75%(12/686)和4.96%(34/686),合并感染率10.93%(75/686)(合并2种69份,合并3种6份).轮状病毒阳性检出率以13-24月龄最高(x2=22.289,P<0.001),随月龄增长呈现先升高后降低趋势,且季节性分布明显,秋冬季(11月-次年2月)高发,以G9P[8]型为主(87.95%,270/307).杯状病毒全年呈多峰分布,3-6月份检出率较高,2015年(24.70%,82/332)高于2014年(13.56%,48/354)(x2=13.841,P<0.001).结论 河北省5岁以下儿童病毒性腹泻病原复杂,混合感染比例较大,轮状病毒为主要致病病原体,该病毒主要侵犯2岁以下儿童,秋冬季高发,其中G9P[8]型成为本地区主要流行株. 展开更多
关键词 婴幼儿 病毒 腹泻 病原学特征分析
原文传递
Bulk—like contribution of tunnel magnetoresistance in magnetic tunnel junctions
6
作者 朱涛 詹文山 +4 位作者 沈峰 张泽 x.H.xiang G.Landry JohnQ.xiao 《Chinese Physics B》 SCIE EI CAS CSCD 2003年第6期665-668,共4页
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部