Matters are generally classified within four states:solid,liquid,gas,and plasma.Three of the four states of matter(solid,gas,and plasma)have been used for THz wave generation with short laser pulse excitation for deca...Matters are generally classified within four states:solid,liquid,gas,and plasma.Three of the four states of matter(solid,gas,and plasma)have been used for THz wave generation with short laser pulse excitation for decades,including the recent vigorous development of THz photonics in gases(air plasma).However,the demonstration of THz generation from liquids was conspicuously absent.It is well known that water,the most common liquid,is a strong absorber in the far infrared range.Therefore,liquid water has historically been sworn off as a source for THz radiation.Recently,broadband THz wave generation from a flowing liquid target has been experimentally demonstrated through laser-induced microplasma.The liquid target as the THz source presents unique properties.Specifically,liquids have the comparable material density to that of solids,meaning that laser pulses over a certain area will interact with three orders more molecules than an equivalent cross-section of gases.In contrast with solid targets,the fluidity of liquid allows every laser pulse to interact with a fresh area on the target,meaning that material damage or degradation is not an issue with the high-repetition rate intense laser pulses.These make liquids very promising candidates for the investigation of high-energy-density plasma,as well as the possibility of being the next generation of THz sources.展开更多
We demonstrate three-dimensional tomographic imaging vising a Fresnel lens with broadband terahertz pulses. Objects at various locations along the beam propagation path are uniquely imaged on the same imaging plane us...We demonstrate three-dimensional tomographic imaging vising a Fresnel lens with broadband terahertz pulses. Objects at various locations along the beam propagation path are uniquely imaged on the same imaging plane using a Fresnel lens with different frequencies of the imaging beam. This procedure allows the reconstruction of an object's tomographic contrast image by assembling the frequency-dependent images.展开更多
The thermal stability and mechanical properties of a gradient-nanograined structure(GNS)CoCrNi medium entropy alloy(MEA)processed by ultrasonic surface rolling were studied by using isothermal/isochronal annealing tes...The thermal stability and mechanical properties of a gradient-nanograined structure(GNS)CoCrNi medium entropy alloy(MEA)processed by ultrasonic surface rolling were studied by using isothermal/isochronal annealing tests combined with quasi-in-situ electron backscatter diffraction(EBSD)characterization and Vickers micro-hardness(HV)measurements.A layer by layer high-throughput investigation method was used to quantitatively study the grain growth kinetics and grain boundary evolution with different initial grain sizes,which could effectively save specimen and time costs.The grain nucleation and growth,as well as shrink and disappearance process throughΣ3 coincidence site lattice boundary migration with slightly lattice rotation during annealing were directly revealed.The layer by layer grain growth kinetics and calculated activation energy indicate that the thermal stability of nanograined top surface layer is relatively higher than that of nano-twined subsurface layer for the gradient CoCrNi MEA processed by ultrasonic surface rolling.Further analysis show that the grain boundary relaxation and dynamic recrystallization of the topmost nano-grains led to the decrease of grain boundary energy,thus improving their thermal stability.The present work provided theoretical basis for the application of CoCrNi MEA at high temperatures.Moreover,the high-throughput method on the investigation of grain stability by using gradient structure can be easily extended to other materials and it is of great significance for understanding the microstructural evolution of gradient materials.展开更多
Theoretical analysis and numerical simulation methods were used to study the in-plane crushing behavior of single-cell structures and regular and composite honeycombs.Square,hexagonal,and circular honeycombs were sele...Theoretical analysis and numerical simulation methods were used to study the in-plane crushing behavior of single-cell structures and regular and composite honeycombs.Square,hexagonal,and circular honeycombs were selected as honeycomb layers to establish composite honeycomb models in the form of composite structures and realize the complementary advantages of honeycombs with type Ⅰ and type Ⅱ structures.The effects of honeycomb layer arrangement,plastic collapse strength,relative density,and crushing velocity on the deformation mode,plateau stress,load uniformity,and energy absorption performance of the composite honeycombs were mainly considered.A semi-empirical formula for plateau stress and energy absorption rate per unit mass for the composite honeycombs was developed.The results showed that the arrangement mode of honeycomb layers is an important factor that affects their mechanical properties.Appropriately selecting the arrangement of honeycomb layers and the proportion of honeycomb layers with different structures in a composite honeycomb can effectively improve its load uniformity and control the magnitude of plateau stress and energy absorption capacity.展开更多
基金supported by the Army Research Office(Grant no.W911NF-17-1-0428)Air Force Office of Scientific Research(Grant no.FA9550-18-1-0357),and National Science Foundation(Grant no.ECCS1916068)+2 种基金A.Tcypkin and S.Kozlov are supported by the Russian Science Foundation(Grant no.19-12-00097).L.Zhang and C.Zhang are supported by the Beijing Natural Science Foundation(Grant no.JQ18015)the National Natural Science Foundation of China(Grant no.12074272).
文摘Matters are generally classified within four states:solid,liquid,gas,and plasma.Three of the four states of matter(solid,gas,and plasma)have been used for THz wave generation with short laser pulse excitation for decades,including the recent vigorous development of THz photonics in gases(air plasma).However,the demonstration of THz generation from liquids was conspicuously absent.It is well known that water,the most common liquid,is a strong absorber in the far infrared range.Therefore,liquid water has historically been sworn off as a source for THz radiation.Recently,broadband THz wave generation from a flowing liquid target has been experimentally demonstrated through laser-induced microplasma.The liquid target as the THz source presents unique properties.Specifically,liquids have the comparable material density to that of solids,meaning that laser pulses over a certain area will interact with three orders more molecules than an equivalent cross-section of gases.In contrast with solid targets,the fluidity of liquid allows every laser pulse to interact with a fresh area on the target,meaning that material damage or degradation is not an issue with the high-repetition rate intense laser pulses.These make liquids very promising candidates for the investigation of high-energy-density plasma,as well as the possibility of being the next generation of THz sources.
文摘We demonstrate three-dimensional tomographic imaging vising a Fresnel lens with broadband terahertz pulses. Objects at various locations along the beam propagation path are uniquely imaged on the same imaging plane using a Fresnel lens with different frequencies of the imaging beam. This procedure allows the reconstruction of an object's tomographic contrast image by assembling the frequency-dependent images.
基金financial supports from the National Natural Science Foundation of China(Nos.51725503,52105144 and 52005185)Shanghai Super Postdoctoral Incentive Plan(No.2020134)Postdoctoral Fellowship for Research in Japan(FY2020 P20350)by the Japan Society for the Promotion of Science(JSPS)。
文摘The thermal stability and mechanical properties of a gradient-nanograined structure(GNS)CoCrNi medium entropy alloy(MEA)processed by ultrasonic surface rolling were studied by using isothermal/isochronal annealing tests combined with quasi-in-situ electron backscatter diffraction(EBSD)characterization and Vickers micro-hardness(HV)measurements.A layer by layer high-throughput investigation method was used to quantitatively study the grain growth kinetics and grain boundary evolution with different initial grain sizes,which could effectively save specimen and time costs.The grain nucleation and growth,as well as shrink and disappearance process throughΣ3 coincidence site lattice boundary migration with slightly lattice rotation during annealing were directly revealed.The layer by layer grain growth kinetics and calculated activation energy indicate that the thermal stability of nanograined top surface layer is relatively higher than that of nano-twined subsurface layer for the gradient CoCrNi MEA processed by ultrasonic surface rolling.Further analysis show that the grain boundary relaxation and dynamic recrystallization of the topmost nano-grains led to the decrease of grain boundary energy,thus improving their thermal stability.The present work provided theoretical basis for the application of CoCrNi MEA at high temperatures.Moreover,the high-throughput method on the investigation of grain stability by using gradient structure can be easily extended to other materials and it is of great significance for understanding the microstructural evolution of gradient materials.
基金the National Natural Science Foundation of China(Grant 11402089)the Natural Science Foundation of Hebei Province of China(Grant A2017502015).The financial contributions are gratefully acknowledged.
文摘Theoretical analysis and numerical simulation methods were used to study the in-plane crushing behavior of single-cell structures and regular and composite honeycombs.Square,hexagonal,and circular honeycombs were selected as honeycomb layers to establish composite honeycomb models in the form of composite structures and realize the complementary advantages of honeycombs with type Ⅰ and type Ⅱ structures.The effects of honeycomb layer arrangement,plastic collapse strength,relative density,and crushing velocity on the deformation mode,plateau stress,load uniformity,and energy absorption performance of the composite honeycombs were mainly considered.A semi-empirical formula for plateau stress and energy absorption rate per unit mass for the composite honeycombs was developed.The results showed that the arrangement mode of honeycomb layers is an important factor that affects their mechanical properties.Appropriately selecting the arrangement of honeycomb layers and the proportion of honeycomb layers with different structures in a composite honeycomb can effectively improve its load uniformity and control the magnitude of plateau stress and energy absorption capacity.