Compressive mechanical properties of 10^# lowcarbon steel with normalizing heat treatment are studied. A Gleeble system is adopted to analyze the quasi-static properties and thermal softening effects of heat treated 1...Compressive mechanical properties of 10^# lowcarbon steel with normalizing heat treatment are studied. A Gleeble system is adopted to analyze the quasi-static properties and thermal softening effects of heat treated 10^# steel,while a Hopkinson bar apparatus is used to investigate its dynamic characteristics under different strain rates. The results showthat yield stress of heat treated 10^# steel is more than that of untreated one at room temperature. When the specimens are tested at different temperatures,yield stresses decrease with increasing temperature except 573 K. Moreover,the influence of strain rate on yield stress are verified,which shows that the yield stress increases sharply from 500 s^-1 to 1 890 s^-1,while it changes a little from 1 890 s^-1 to 4 850 s^-1. The results indicate that yield stress is mainly influenced by hardening effect at lowstrain rate and controlled by both thermal softening effect and strain rate hardening effect at high strain rate.展开更多
基金Supported by the Key Laboratory of Forensic Marks,Ministry of Public Security(2014FM KFKT03)
文摘Compressive mechanical properties of 10^# lowcarbon steel with normalizing heat treatment are studied. A Gleeble system is adopted to analyze the quasi-static properties and thermal softening effects of heat treated 10^# steel,while a Hopkinson bar apparatus is used to investigate its dynamic characteristics under different strain rates. The results showthat yield stress of heat treated 10^# steel is more than that of untreated one at room temperature. When the specimens are tested at different temperatures,yield stresses decrease with increasing temperature except 573 K. Moreover,the influence of strain rate on yield stress are verified,which shows that the yield stress increases sharply from 500 s^-1 to 1 890 s^-1,while it changes a little from 1 890 s^-1 to 4 850 s^-1. The results indicate that yield stress is mainly influenced by hardening effect at lowstrain rate and controlled by both thermal softening effect and strain rate hardening effect at high strain rate.