Detection of in vivo biodegradation is critical for development of next-generation medical devices such as bioresorbable stents or scaffolds(BRSs).In particular,it is urgent to establish a nondestructive approach to e...Detection of in vivo biodegradation is critical for development of next-generation medical devices such as bioresorbable stents or scaffolds(BRSs).In particular,it is urgent to establish a nondestructive approach to examine in vivo degradation of a new-generation coronary stent for interventional treatment based on mammal experiments;otherwise it is not available to semi-quantitatively monitor biodegradation in any clinical trial.Herein,we put forward a semi-quantitative approach to measure degradation of a sirolimus-eluting iron bioresorbable scaffold(IBS)based on optical coherence tomography(OCT)images;this approach was confirmed to be consistent with the present weight-loss measurements,which is,however,a destructive approach.The IBS was fabricated by a metal-polymer composite technique with a polylactide coating on an iron stent.The efficacy as a coronary stent of this new bioresorbable scaffold was compared with that of a permanent metal stent with the name of trade mark Xience,which has been widely used in clinic.The endothelial coverage on IBS was found to be greater than on Xience after implantation in a rabbit model;and our well-designed ultrathin stent exhibited less individual variation.We further examined degradation of the IBSs in both minipig coronary artery and rabbit abdominal aorta models.The present result indicated much faster iron degradation of IBS in the rabbit model than in the porcine model.The semi-quantitative approach to detect biodegradation of IBS and the finding of the species difference might be stimulating for fundamental investigation of biodegradable implants and clinical translation of the next-generation coronary stents.展开更多
Fully bioresorbable scaffolds have been designed to overcome the limitations of traditional drug-eluting stents(DESs),which permanently cage the native vessel wall and pose possible complications.The ultrathin-strut d...Fully bioresorbable scaffolds have been designed to overcome the limitations of traditional drug-eluting stents(DESs),which permanently cage the native vessel wall and pose possible complications.The ultrathin-strut designed sirolimus-eluting iron bioresorbable coronary scaffold system(IBS)shows comparable mechanical properties to traditional DESs and exhibits an adaptive degradation profile during target vessel healing,which makes it a promising candidate in all-comers patient population.For implanted medical devices,magnetic resonance(MR)imaging properties,including MR safety and compatibility,should be evaluated before its clinical use,especially for devices with intrinsic ferromagnetism.In this study,MR safety and compatibility of the IBS scaffold were evaluated based on a series of well-designed in-vitro,ex-vivo and in-vivo experiments,considering possible risks,including scaffold movement,over-heating,image artifact,and possible vessel injury,under typical MR condition.Traditional ASTM standards for MR safety and compatibility evaluation of intravascular devices were referred,but not only limited to that.The unique time-relevant MR properties of bioresorbable scaffolds were also discussed.Possible forces imposed on the scaffold during MR scanning and MR image artifacts gradually decreased along with scaffold degradation/absorption.Rigorous experiments designed based on a scientifically based rationale revealed that the IBS scaffold is MR conditional,though not MR compatible before complete absorption.The methodology used in the present study can give insight into the MR evaluation of magnetic scaffolds(bioresorbable)or stents(permanent).展开更多
The Central Asian Orogenic Belt(CAOB) resulted from accretion during the Paleozoic subduction of the PaleoAsian Ocean. The Xilinhot area in Inner Mongolia is located in the northern subduction zone of the central-east...The Central Asian Orogenic Belt(CAOB) resulted from accretion during the Paleozoic subduction of the PaleoAsian Ocean. The Xilinhot area in Inner Mongolia is located in the northern subduction zone of the central-eastern CAOB and outcropped a large number of late Paleozoic mafic intrusions. The characteristics of magma source and tectonic setting of the mafic intrusions and their response to the closure process of the Paleo-Asian Ocean are still controversial. This study presents LA-ICPMS zircon U-Pb ages and geochemical features of mafic intrusions in the Xilinhot area to constrain the northward subduction of the Paleo-Asian Ocean. The mafic intrusions consist of gabbro, hornblende gabbro, and diabase. Their intrusion times can be divided into three stages of 326-321 Ma, 276 Ma and 254 Ma by zircon U-Pb ages. The first two stages of the 326-276 Ma intrusions mostly originated from subduction-modified continental lithospheric mantle sources that underwent a variable degree partial melting(5-30%), recording the subduction of oceanic crust. The third stage of the 254 Ma mafic rocks also show arc-related features. The primary magma compositions calculated by PRIMELT2 modeling on three samples of ~326 Ma and two samples of ~254 Ma show that these mafic samples are characterized by a variable range in SiO2(47.51-51.47 wt%), Al2O3(11.46-15.55 wt%), ΣFeO(8.27-9.61 wt%), MgO(13.01-15.18 wt%) and CaO(9.13-11.67 wt%), consisting with the features between enriched mantle and lower continental crust. The source mantle melting of mafic intrusions occurred under temperatures of 1302-1351°C and pressures of 0.92-1.30 GPa. The magmatic processes occurred near the crust-mantle boundary at about 33-45 km underground. Combined with previous studies, it is concluded that Carboniferous to early Permian(~326-275 Ma) northward subduction of the Paleo-Asian oceanic crust led to the formation of the mafic magmatism in the Baolidao arc zone. The whole region had entered the collision environment at ~254 Ma, but with subduction-related e展开更多
Potassium-ion batteries (KIBs) are promising candidates for large-scale energy storage due to the abundance of potassium and its chemical similarity to lithium.Nevertheless,the performances of KIBs are still unsatisfa...Potassium-ion batteries (KIBs) are promising candidates for large-scale energy storage due to the abundance of potassium and its chemical similarity to lithium.Nevertheless,the performances of KIBs are still unsatisfactory for practical applications,mainly hindered by the lack of suitable cathode materials.Herein,combining the strong inductive effect of sulphate and the feasible preparation of Fe^(2+)-containing compounds in oxalate system,a compound with novel architecture,K_(4)Fe_(3)(C_(2)O_(4))_(3)(SO_(4))_(2),has been identified as a lowcost and environmentally friendly cathode for stable potassium-ion storage.Its unique crystal structure possesses an unprecedented two-dimensional framework of triple layers,with 3.379Åinterlayer distance and large intralayer rings in the size of 4.576×6.846Å.According to first-principles simulations,such a configuration is favorable for reversible K-ion migration with a very low volume change of 6.4%.Synchrotron X-ray absorption spectra and X-ray diffraction characterizations at different charging/discharging states and electrochemical performances based on its half and full cells further verify its excellent reversibility and structural stability.Although its performance needs to be improved via further composition tuning with multi-valent transition metals,doping,structural optimization,etc.,this study clearly presents a stable structural model for K-ion cathodes with merits of low cost and environmental friendliness.展开更多
Metallic iron particles are of great potential for microwave absorption materials due to their strong magnetic loss ability.However,the oxidation susceptibility of metallic iron particles in the atmospheric environmen...Metallic iron particles are of great potential for microwave absorption materials due to their strong magnetic loss ability.However,the oxidation susceptibility of metallic iron particles in the atmospheric environment is regarded as a major factor causing performance degradation.Although many efforts have been developed to avoid their oxidation,whether partial surface oxidized iron particles can improve the microwave absorbing performance is rarely concerned.In order to explore the effect of partial surface oxidation of iron on its properties,the designed yolk–shelled(Fe/FeO_(x))@C composites with multiple heterointerfaces were synthesized via an in-situ polymerization and a finite reduction–oxidation process of Fe_(2)O_(3)ellipsoids.The performance enhancement mechanisms of Fe/FeO_(x)heterointerfaces were also elaborated.It is demonstrated that the introduction of Fe-based heterogeneous interfaces can not only enhance the dielectric loss,but also increase the imaginary part of the permeability in the higher frequency range to strengthen the magnetic loss ability.Meanwhile,the yolk–shell structure can effectively improve impedance matching and enhance microwave absorption performances via increasing multiple reflection and scattering behaviors of incident microwaves.Compared to Fe@C composite,the effective absorption(reflection loss(RL)<−10 dB)bandwidth of the optimized(Fe/FeO_(x))@C-2 increases from 5.7 to 7.3 GHz(10.7–18.0 GHz)at a same matching thickness of 2 mm,which can completely cover Ku-band.This work offers a good perspective for the enhancement of magnetic loss ability and microwave absorption performance of Fe-based microwave absorption materials with promising practical applications.展开更多
The Solonker suture zone has long been considered to mark the location of the final disappearance of the PaleoAsian Ocean in the eastern Central Asian Orogenic Belt(CAOB). However, the time of final suturing is still ...The Solonker suture zone has long been considered to mark the location of the final disappearance of the PaleoAsian Ocean in the eastern Central Asian Orogenic Belt(CAOB). However, the time of final suturing is still controversial with two main different proposals of late Permian to early Triassic, and late Devonian. This study reports integrated wholerock geochemistry and LA-ICP-MS zircon U-Pb ages of sedimentary rocks from the Silurian Xuniwusu Formation, the Devonian Xilingol Complex and the Permian Zhesi Formation in the Hegenshan-Xilinhot-Linxi area in central Inner Mongolia, China. The depositional environment, provenance and tectonic setting of the Silurian-Devonian and the Permian sediments are compared to constrain the tectonic evolution of the Solonker suture zone and its neighboring zones. The protoliths of the silty slates from the Xuniwusu Formation in the Baolidao zone belong to wacke and were derived from felsic igneous rocks with steady-state weathering, poor sorting and compositional immaturity. The protoliths of metasedimentary rocks from the Xilingol Complex were wackes and litharenites and were sourced from predominantly felsic igneous rocks with variable weathering conditions and moderate sorting. The Xuniwusu Formation and Xilingol Complex samples both have two groups of detrital zircon that peak at ca. 0.9-1.0 Ga and ca. 420-440 Ma, with maximum deposition ages of late Silurian and middle Devonian age, respectively. Considering the ca. 484-383 Ma volcanic arc in the Baolidao zone, the Xuxiniwu Formation represents an oceanic trench sediment and is covered by the sedimentary rocks in the Xilingol Complex that represents a continental slope sediment in front of the arc. The middle Permian Zhesi Formation metasandstones were derived from predominantly felsic igneous rocks and are texturally immature with very low degrees of rounding and sorting, indicating short transport and rapid burial. The Zhesi Formation in the Hegenshan zone has a main zircon age peak of 302 Ma and a subordinate peak of 展开更多
Biodegradable metals,designed to be safely degraded and absorbed by the body after fulfil the intended functions,are of particular interest in the 21st century.The marriage of advanced biodegradable metals with clinic...Biodegradable metals,designed to be safely degraded and absorbed by the body after fulfil the intended functions,are of particular interest in the 21st century.The marriage of advanced biodegradable metals with clinical needs have yield unprecedented possibility.Magnesium,iron,and zinc-based materials constitute the main components of temporary,implantable metallic medical devices.A burgeoning number of studies on biodegradable metals have driven the clinical translation of biodegradable metallic devices in the fields of cardiology and orthopaedics over the last decade.Their ability to degrade as well as their beneficial biological functions elicited during degradation endow this type of material with the potential to shift the paradigm in the treatment of musculoskeletal and cardiovascular diseases.This review provides an insight into the degradation mechanism of these metallic devices in specific application sites and introduces state-of-the-art translational research in the field of biodegradable metals,as well as highlighting some challenges for materials design strategies in the context of mechanical and biological compatibility.展开更多
In this paper, we propose a three-layered chiral metamaterial (CMM) that exhibits an asymmetric transmission effect for linearly polarized waves along forwardly and backwardly propagating in the microwave region, whic...In this paper, we propose a three-layered chiral metamaterial (CMM) that exhibits an asymmetric transmission effect for linearly polarized waves along forwardly and backwardly propagating in the microwave region, which not only realizes the asymmetric transmission effect of multi-frequency points for linearly polarized wave in microwave band, but also breaks through the limitation of single transformation from linear polarization to linear polarization. Numerical simulation results indicate that incident wave for linearly polarized waves will be converted and transmitted as a circularly polarized wave along the forward direction at 8.31 GHz. Moreover, the asymmetric transmission (AT) parameter Δ achieves 0.8 around 12 GHz, proving the existence of strong polarization conversion and diode-like function. The proposed CMM shows great potential applications in high performance linear polarization convertor and isolator in microwave frequency.展开更多
基金National Key R&D Program of China(grants number 2018YFC1106600 and 2016YFC1100300)Shenzhen Industrial and Information Technology Bureau(20180309174916657)+1 种基金Science,Technology and Innovation Commission of Shenzhen Municipality(grant number GJHZ20180418190517302)The authors thank Dr.Renu Virmani for her expert assistance on endothelialization and histopathology analysis.
文摘Detection of in vivo biodegradation is critical for development of next-generation medical devices such as bioresorbable stents or scaffolds(BRSs).In particular,it is urgent to establish a nondestructive approach to examine in vivo degradation of a new-generation coronary stent for interventional treatment based on mammal experiments;otherwise it is not available to semi-quantitatively monitor biodegradation in any clinical trial.Herein,we put forward a semi-quantitative approach to measure degradation of a sirolimus-eluting iron bioresorbable scaffold(IBS)based on optical coherence tomography(OCT)images;this approach was confirmed to be consistent with the present weight-loss measurements,which is,however,a destructive approach.The IBS was fabricated by a metal-polymer composite technique with a polylactide coating on an iron stent.The efficacy as a coronary stent of this new bioresorbable scaffold was compared with that of a permanent metal stent with the name of trade mark Xience,which has been widely used in clinic.The endothelial coverage on IBS was found to be greater than on Xience after implantation in a rabbit model;and our well-designed ultrathin stent exhibited less individual variation.We further examined degradation of the IBSs in both minipig coronary artery and rabbit abdominal aorta models.The present result indicated much faster iron degradation of IBS in the rabbit model than in the porcine model.The semi-quantitative approach to detect biodegradation of IBS and the finding of the species difference might be stimulating for fundamental investigation of biodegradable implants and clinical translation of the next-generation coronary stents.
基金supported by the National Key Research and Development Program of China(No.2018YFC1106600)the International Cooperation Research Project of Shenzhen No.GJHZ20180418190517302.
文摘Fully bioresorbable scaffolds have been designed to overcome the limitations of traditional drug-eluting stents(DESs),which permanently cage the native vessel wall and pose possible complications.The ultrathin-strut designed sirolimus-eluting iron bioresorbable coronary scaffold system(IBS)shows comparable mechanical properties to traditional DESs and exhibits an adaptive degradation profile during target vessel healing,which makes it a promising candidate in all-comers patient population.For implanted medical devices,magnetic resonance(MR)imaging properties,including MR safety and compatibility,should be evaluated before its clinical use,especially for devices with intrinsic ferromagnetism.In this study,MR safety and compatibility of the IBS scaffold were evaluated based on a series of well-designed in-vitro,ex-vivo and in-vivo experiments,considering possible risks,including scaffold movement,over-heating,image artifact,and possible vessel injury,under typical MR condition.Traditional ASTM standards for MR safety and compatibility evaluation of intravascular devices were referred,but not only limited to that.The unique time-relevant MR properties of bioresorbable scaffolds were also discussed.Possible forces imposed on the scaffold during MR scanning and MR image artifacts gradually decreased along with scaffold degradation/absorption.Rigorous experiments designed based on a scientifically based rationale revealed that the IBS scaffold is MR conditional,though not MR compatible before complete absorption.The methodology used in the present study can give insight into the MR evaluation of magnetic scaffolds(bioresorbable)or stents(permanent).
基金funded by grants from the National Key R&D Program of China (2016YFC0600403, 2017YFC0601206)the National Natural Science Foundation of China (41872063, 41930215, 41520104003, 41888101)+1 种基金the Key Research Program of Frontier Sciences, CAS (QYZDJ-SSWSYS012)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGL170404, CUG160232)
文摘The Central Asian Orogenic Belt(CAOB) resulted from accretion during the Paleozoic subduction of the PaleoAsian Ocean. The Xilinhot area in Inner Mongolia is located in the northern subduction zone of the central-eastern CAOB and outcropped a large number of late Paleozoic mafic intrusions. The characteristics of magma source and tectonic setting of the mafic intrusions and their response to the closure process of the Paleo-Asian Ocean are still controversial. This study presents LA-ICPMS zircon U-Pb ages and geochemical features of mafic intrusions in the Xilinhot area to constrain the northward subduction of the Paleo-Asian Ocean. The mafic intrusions consist of gabbro, hornblende gabbro, and diabase. Their intrusion times can be divided into three stages of 326-321 Ma, 276 Ma and 254 Ma by zircon U-Pb ages. The first two stages of the 326-276 Ma intrusions mostly originated from subduction-modified continental lithospheric mantle sources that underwent a variable degree partial melting(5-30%), recording the subduction of oceanic crust. The third stage of the 254 Ma mafic rocks also show arc-related features. The primary magma compositions calculated by PRIMELT2 modeling on three samples of ~326 Ma and two samples of ~254 Ma show that these mafic samples are characterized by a variable range in SiO2(47.51-51.47 wt%), Al2O3(11.46-15.55 wt%), ΣFeO(8.27-9.61 wt%), MgO(13.01-15.18 wt%) and CaO(9.13-11.67 wt%), consisting with the features between enriched mantle and lower continental crust. The source mantle melting of mafic intrusions occurred under temperatures of 1302-1351°C and pressures of 0.92-1.30 GPa. The magmatic processes occurred near the crust-mantle boundary at about 33-45 km underground. Combined with previous studies, it is concluded that Carboniferous to early Permian(~326-275 Ma) northward subduction of the Paleo-Asian oceanic crust led to the formation of the mafic magmatism in the Baolidao arc zone. The whole region had entered the collision environment at ~254 Ma, but with subduction-related e
基金financial supports from the Key-Area Research and Development Program of Guangdong Province (2019B090914003)the National Natural Science Foundation of China (51822210,51972329 and 51902339)+2 种基金Shenzhen Science and Technology Planning Project (JCYJ20190807172001755 and JCYJ20180507182512042)SIAT Innovation Program for Excellent Young Researchers (201811 and 201825)the Science and Technology Planning Project of Guangdong Province (2019A1515110975 and 2019A1515011902)。
文摘Potassium-ion batteries (KIBs) are promising candidates for large-scale energy storage due to the abundance of potassium and its chemical similarity to lithium.Nevertheless,the performances of KIBs are still unsatisfactory for practical applications,mainly hindered by the lack of suitable cathode materials.Herein,combining the strong inductive effect of sulphate and the feasible preparation of Fe^(2+)-containing compounds in oxalate system,a compound with novel architecture,K_(4)Fe_(3)(C_(2)O_(4))_(3)(SO_(4))_(2),has been identified as a lowcost and environmentally friendly cathode for stable potassium-ion storage.Its unique crystal structure possesses an unprecedented two-dimensional framework of triple layers,with 3.379Åinterlayer distance and large intralayer rings in the size of 4.576×6.846Å.According to first-principles simulations,such a configuration is favorable for reversible K-ion migration with a very low volume change of 6.4%.Synchrotron X-ray absorption spectra and X-ray diffraction characterizations at different charging/discharging states and electrochemical performances based on its half and full cells further verify its excellent reversibility and structural stability.Although its performance needs to be improved via further composition tuning with multi-valent transition metals,doping,structural optimization,etc.,this study clearly presents a stable structural model for K-ion cathodes with merits of low cost and environmental friendliness.
基金supported by the National Natural Science Foundation of China(Nos.21771151 and 21931009)the Natural Science Foundation of Fujian Province of China(No.2022J01042).
文摘Metallic iron particles are of great potential for microwave absorption materials due to their strong magnetic loss ability.However,the oxidation susceptibility of metallic iron particles in the atmospheric environment is regarded as a major factor causing performance degradation.Although many efforts have been developed to avoid their oxidation,whether partial surface oxidized iron particles can improve the microwave absorbing performance is rarely concerned.In order to explore the effect of partial surface oxidation of iron on its properties,the designed yolk–shelled(Fe/FeO_(x))@C composites with multiple heterointerfaces were synthesized via an in-situ polymerization and a finite reduction–oxidation process of Fe_(2)O_(3)ellipsoids.The performance enhancement mechanisms of Fe/FeO_(x)heterointerfaces were also elaborated.It is demonstrated that the introduction of Fe-based heterogeneous interfaces can not only enhance the dielectric loss,but also increase the imaginary part of the permeability in the higher frequency range to strengthen the magnetic loss ability.Meanwhile,the yolk–shell structure can effectively improve impedance matching and enhance microwave absorption performances via increasing multiple reflection and scattering behaviors of incident microwaves.Compared to Fe@C composite,the effective absorption(reflection loss(RL)<−10 dB)bandwidth of the optimized(Fe/FeO_(x))@C-2 increases from 5.7 to 7.3 GHz(10.7–18.0 GHz)at a same matching thickness of 2 mm,which can completely cover Ku-band.This work offers a good perspective for the enhancement of magnetic loss ability and microwave absorption performance of Fe-based microwave absorption materials with promising practical applications.
基金funded by grants from the National Key R&D Program of China (2016YFC0600403, 2017YFC0601206)the National Natural Science Foundation of China (41872063, 41520104003, 41888101)+1 种基金the Key Research Program of Frontier Sciences, CAS (QYZDJ-SSW-SYS012)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGL170404, CUG160232)
文摘The Solonker suture zone has long been considered to mark the location of the final disappearance of the PaleoAsian Ocean in the eastern Central Asian Orogenic Belt(CAOB). However, the time of final suturing is still controversial with two main different proposals of late Permian to early Triassic, and late Devonian. This study reports integrated wholerock geochemistry and LA-ICP-MS zircon U-Pb ages of sedimentary rocks from the Silurian Xuniwusu Formation, the Devonian Xilingol Complex and the Permian Zhesi Formation in the Hegenshan-Xilinhot-Linxi area in central Inner Mongolia, China. The depositional environment, provenance and tectonic setting of the Silurian-Devonian and the Permian sediments are compared to constrain the tectonic evolution of the Solonker suture zone and its neighboring zones. The protoliths of the silty slates from the Xuniwusu Formation in the Baolidao zone belong to wacke and were derived from felsic igneous rocks with steady-state weathering, poor sorting and compositional immaturity. The protoliths of metasedimentary rocks from the Xilingol Complex were wackes and litharenites and were sourced from predominantly felsic igneous rocks with variable weathering conditions and moderate sorting. The Xuniwusu Formation and Xilingol Complex samples both have two groups of detrital zircon that peak at ca. 0.9-1.0 Ga and ca. 420-440 Ma, with maximum deposition ages of late Silurian and middle Devonian age, respectively. Considering the ca. 484-383 Ma volcanic arc in the Baolidao zone, the Xuxiniwu Formation represents an oceanic trench sediment and is covered by the sedimentary rocks in the Xilingol Complex that represents a continental slope sediment in front of the arc. The middle Permian Zhesi Formation metasandstones were derived from predominantly felsic igneous rocks and are texturally immature with very low degrees of rounding and sorting, indicating short transport and rapid burial. The Zhesi Formation in the Hegenshan zone has a main zircon age peak of 302 Ma and a subordinate peak of
基金supported by the National Natural Science Foundation of China(No.5193000081).
文摘Biodegradable metals,designed to be safely degraded and absorbed by the body after fulfil the intended functions,are of particular interest in the 21st century.The marriage of advanced biodegradable metals with clinical needs have yield unprecedented possibility.Magnesium,iron,and zinc-based materials constitute the main components of temporary,implantable metallic medical devices.A burgeoning number of studies on biodegradable metals have driven the clinical translation of biodegradable metallic devices in the fields of cardiology and orthopaedics over the last decade.Their ability to degrade as well as their beneficial biological functions elicited during degradation endow this type of material with the potential to shift the paradigm in the treatment of musculoskeletal and cardiovascular diseases.This review provides an insight into the degradation mechanism of these metallic devices in specific application sites and introduces state-of-the-art translational research in the field of biodegradable metals,as well as highlighting some challenges for materials design strategies in the context of mechanical and biological compatibility.
文摘In this paper, we propose a three-layered chiral metamaterial (CMM) that exhibits an asymmetric transmission effect for linearly polarized waves along forwardly and backwardly propagating in the microwave region, which not only realizes the asymmetric transmission effect of multi-frequency points for linearly polarized wave in microwave band, but also breaks through the limitation of single transformation from linear polarization to linear polarization. Numerical simulation results indicate that incident wave for linearly polarized waves will be converted and transmitted as a circularly polarized wave along the forward direction at 8.31 GHz. Moreover, the asymmetric transmission (AT) parameter Δ achieves 0.8 around 12 GHz, proving the existence of strong polarization conversion and diode-like function. The proposed CMM shows great potential applications in high performance linear polarization convertor and isolator in microwave frequency.