期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
高维线性模型的稀疏半参有效估计
1
作者
黄勉
付欣郁
姚卫鑫
《中国科学:数学》
CSCD
北大核心
2023年第4期591-614,共24页
高维线性回归估计是一个被大量学者研究的重要统计学问题.在误差分布未知的情况下,如何将有效性纳入高维估计仍是一个尚未解决且具有挑战性的问题.最小二乘估计在非Gauss误差密度下会损失估计的效率,而极大似然估计由于误差密度未知,无...
高维线性回归估计是一个被大量学者研究的重要统计学问题.在误差分布未知的情况下,如何将有效性纳入高维估计仍是一个尚未解决且具有挑战性的问题.最小二乘估计在非Gauss误差密度下会损失估计的效率,而极大似然估计由于误差密度未知,无法直接被应用.基于惩罚估计方程,本文提出一种新的稀疏半参有效估计方法应用于高维线性回归的估计.本文证明了在误差密度未知的超高维回归下,新的估计渐近地与具有神谕性的极大似然估计一样有效,因此对于非Gauss误差密度,它比传统的惩罚最小二乘估计更有效.此外,本文证明了几种常用的高维回归估计是本文方法的特例.模拟和实际数据的结果验证了本文所提出方法的有效性.
展开更多
关键词
高维线性回归
惩罚估计方程
半参有效估计
稀疏模型估计
原文传递
题名
高维线性模型的稀疏半参有效估计
1
作者
黄勉
付欣郁
姚卫鑫
机构
上海财经大学统计与管理学院
Department of Statistics
出处
《中国科学:数学》
CSCD
北大核心
2023年第4期591-614,共24页
基金
上海财经大学创新团队支持计划(批准号:2020110930)资助项目。
文摘
高维线性回归估计是一个被大量学者研究的重要统计学问题.在误差分布未知的情况下,如何将有效性纳入高维估计仍是一个尚未解决且具有挑战性的问题.最小二乘估计在非Gauss误差密度下会损失估计的效率,而极大似然估计由于误差密度未知,无法直接被应用.基于惩罚估计方程,本文提出一种新的稀疏半参有效估计方法应用于高维线性回归的估计.本文证明了在误差密度未知的超高维回归下,新的估计渐近地与具有神谕性的极大似然估计一样有效,因此对于非Gauss误差密度,它比传统的惩罚最小二乘估计更有效.此外,本文证明了几种常用的高维回归估计是本文方法的特例.模拟和实际数据的结果验证了本文所提出方法的有效性.
关键词
高维线性回归
惩罚估计方程
半参有效估计
稀疏模型估计
Keywords
high-dimensional linear regression
penalized estimating equation
semiparametric efficient estimator
sparse model estimation
分类号
O212.1 [理学—概率论与数理统计]
原文传递
题名
作者
出处
发文年
被引量
操作
1
高维线性模型的稀疏半参有效估计
黄勉
付欣郁
姚卫鑫
《中国科学:数学》
CSCD
北大核心
2023
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部