Online learning is a very important means of study, and has been adopted in many countries worldwide. However, only recently are researchers able to collect and analyze massive online learning datasets due to the COVI...Online learning is a very important means of study, and has been adopted in many countries worldwide. However, only recently are researchers able to collect and analyze massive online learning datasets due to the COVID-19 epidemic. In this article, we analyze the difference between online learner groups by using an unsupervised machine learning technique, i.e., k-prototypes clustering. Specifically, we use questionnaires designed by domain experts to collect various online learning data, and investigate students’ online learning behavior and learning outcomes through analyzing the collected questionnaire data. Our analysis results suggest that students with better learning media generally have better online learning behavior and learning result than those with poor online learning media. In addition, both in economically developed or undeveloped regions, the number of students with better learning media is less than the number of students with poor learning media. Finally, the results presented here show that whether in an economically developed or an economically undeveloped region, the number of students who are enriched with learning media available is an important factor that affects online learning behavior and learning outcomes.展开更多
The ravages of COVID-19 have forced schools in countries around the world to make a temporary shift from traditional, face-to-face teaching to online teaching. Are teachers in schools prepared to deal with this change...The ravages of COVID-19 have forced schools in countries around the world to make a temporary shift from traditional, face-to-face teaching to online teaching. Are teachers in schools prepared to deal with this change? We conducted a survey in which we distributed questionnaires to primary and secondary school teachers in Guangdong Province, China, asking them about their views on various aspects of online education. We received 498,481 questionnaires back, and over 80% of teachers were satisfied with the online resources, and over 68% of teachers were satisfied with the online platform and software. Immediately afterward, we analyzed the differences between urban and rural teachers on specific issues using cross-sectional analysis and chi-square tests and built a neural network model to achieve predictions of teacher satisfaction with an accuracy of nearly 90%. Finally, we analyzed the features that influence the decisions of the neural network. This epidemic has prompted the widespread use of online learning, and the insights we gain today will be helpful in the future.展开更多
文摘Online learning is a very important means of study, and has been adopted in many countries worldwide. However, only recently are researchers able to collect and analyze massive online learning datasets due to the COVID-19 epidemic. In this article, we analyze the difference between online learner groups by using an unsupervised machine learning technique, i.e., k-prototypes clustering. Specifically, we use questionnaires designed by domain experts to collect various online learning data, and investigate students’ online learning behavior and learning outcomes through analyzing the collected questionnaire data. Our analysis results suggest that students with better learning media generally have better online learning behavior and learning result than those with poor online learning media. In addition, both in economically developed or undeveloped regions, the number of students with better learning media is less than the number of students with poor learning media. Finally, the results presented here show that whether in an economically developed or an economically undeveloped region, the number of students who are enriched with learning media available is an important factor that affects online learning behavior and learning outcomes.
文摘The ravages of COVID-19 have forced schools in countries around the world to make a temporary shift from traditional, face-to-face teaching to online teaching. Are teachers in schools prepared to deal with this change? We conducted a survey in which we distributed questionnaires to primary and secondary school teachers in Guangdong Province, China, asking them about their views on various aspects of online education. We received 498,481 questionnaires back, and over 80% of teachers were satisfied with the online resources, and over 68% of teachers were satisfied with the online platform and software. Immediately afterward, we analyzed the differences between urban and rural teachers on specific issues using cross-sectional analysis and chi-square tests and built a neural network model to achieve predictions of teacher satisfaction with an accuracy of nearly 90%. Finally, we analyzed the features that influence the decisions of the neural network. This epidemic has prompted the widespread use of online learning, and the insights we gain today will be helpful in the future.