Tomography is an informative imaging modality that is usually implemented by mechanical scanning,owing to the limited depth-of-field(DOF)in conventional systems.However,recent imaging systems are working towards more ...Tomography is an informative imaging modality that is usually implemented by mechanical scanning,owing to the limited depth-of-field(DOF)in conventional systems.However,recent imaging systems are working towards more compact and stable architectures;therefore,developing nonmotion tomography is highly desirable.Here,we propose a metalens-based spectral imaging system with an aplanatic GaN metalens(NA=0.78),in which large chromatic dispersion is used to access spectral focus tuning and optical zooming in the visible spectrum.After the function of wavelength-switched tomography was confirmed on cascaded samples,this aplanatic metalens is utilized to image microscopic frog egg cells and shows excellent tomographic images with distinct DOF features of the cell membrane and nucleus.Our approach makes good use of the large diffractive dispersion of the metalens and develops a new imaging technique that advances recent informative optical devices.展开更多
Polarimetry plays an indispensable role in modern optics.Nevertheless,the current strategies generally suffer from bulky system volume or spatial multiplexing scheme,resulting in limited performances when dealing with...Polarimetry plays an indispensable role in modern optics.Nevertheless,the current strategies generally suffer from bulky system volume or spatial multiplexing scheme,resulting in limited performances when dealing with inhomogeneous polarizations.Here,we propose a non-interleaved,interferometric method to analyze the polarizations based on a tri-channel chiral metasurface.A deep convolutional neural network is also incorporated to enable fast,robust and accurate polarimetry.Spatially uniform and nonuniform polarizations are both measured through the metasurface experimentally.Distinction between two semblable glasses is also demonstrated.Our strategy features the merits of compactness and high spatial resolution,and would inspire more intriguing design for detecting and sensing.展开更多
Self-imaging is an important function for signal transport,distribution,and processing in integrated optics,which is usually implemented by multimode interference or diffractive imaging process.However,these processes...Self-imaging is an important function for signal transport,distribution,and processing in integrated optics,which is usually implemented by multimode interference or diffractive imaging process.However,these processes suffer from the resolution limit due to classical wave propagation dynamics.We propose and demonstrate subwavelength optical imaging in one-dimensional silicon waveguide arrays,which is implemented by cascading straight and curved waveguides in sequence.The coupling coefficient between the curved waveguides is tuned to be negative to reach a negative dispersion,which is an analog to a hyperbolic metamaterial with a negative refractive index.Therefore,it endows the waveguide array with a superlens function as it is connected with a traditional straight waveguide array with positive dispersion.With a judiciously engineered cascading silicon waveguide array,we successfully show the subwavelength self-imaging process of each input port of the waveguide array as the single point source.Our approach provides a strategy for dealing with optical signals at the subwavelength scale and indicates functional designs in high-density waveguide integrations.展开更多
Integrated optical phased arrays(OPAs) have attracted significant interest to steer laser beams for applications including free-space communications, holography, and light detection and ranging. Although many methods ...Integrated optical phased arrays(OPAs) have attracted significant interest to steer laser beams for applications including free-space communications, holography, and light detection and ranging. Although many methods have been proposed to suppress grating lobes, OPAs have also been limited by the trade-off between field of view(FOV)and beamforming efficiency. Here, we propose a metasurface empowered port-selected OPA(POPA), an OPA steered by port selection, which is implemented by an aperiodic waveguide array with an average pitch less than the wavelength and phase controlled by coupling among waveguides. A metasurface layer above the POPA was designed to increase wide FOV steering, aliasing-free by polarization division. As a result, we experimentally demonstrate beam scanning over a ±41.04° × 7.06° FOV. The aliasing-free POPA with expanded FOV shows successful incorporation of the waveguide-based OPA technique with an emerging metasurface design, indicating much exploration in concepts for integrated photonic devices.展开更多
基金the financial support from The National Key R&D Program of China(2016YFA0202103,2017YFA0303700)the National Natural Science Foundation of China(Nos.91850204,11674167,11621091,11774164)the Department of Science and Technology,Taiwan,China(Grant No.MOST-107-2112-M-001-042-MY3,MOST-107-2911-I-001-508,MOST-107-2911-I-001-510,MOST-107-2923-M-001-010-MY3).
文摘Tomography is an informative imaging modality that is usually implemented by mechanical scanning,owing to the limited depth-of-field(DOF)in conventional systems.However,recent imaging systems are working towards more compact and stable architectures;therefore,developing nonmotion tomography is highly desirable.Here,we propose a metalens-based spectral imaging system with an aplanatic GaN metalens(NA=0.78),in which large chromatic dispersion is used to access spectral focus tuning and optical zooming in the visible spectrum.After the function of wavelength-switched tomography was confirmed on cascaded samples,this aplanatic metalens is utilized to image microscopic frog egg cells and shows excellent tomographic images with distinct DOF features of the cell membrane and nucleus.Our approach makes good use of the large diffractive dispersion of the metalens and develops a new imaging technique that advances recent informative optical devices.
基金The authors acknowledge the funding provided by National Key R&D Program of China(2022YFA1404301)National Natural Science Foundation of China(Nos.62325504,62305149,92250304,62288101)Dengfeng Project B of Nanjing University.The authors acknowledge the micro-fabrication center of the National Laboratory of Solid State Microstructures(NLSSM)for technique support.
文摘Polarimetry plays an indispensable role in modern optics.Nevertheless,the current strategies generally suffer from bulky system volume or spatial multiplexing scheme,resulting in limited performances when dealing with inhomogeneous polarizations.Here,we propose a non-interleaved,interferometric method to analyze the polarizations based on a tri-channel chiral metasurface.A deep convolutional neural network is also incorporated to enable fast,robust and accurate polarimetry.Spatially uniform and nonuniform polarizations are both measured through the metasurface experimentally.Distinction between two semblable glasses is also demonstrated.Our strategy features the merits of compactness and high spatial resolution,and would inspire more intriguing design for detecting and sensing.
基金The authors acknowledge the financial support from the National Key R&D Program of China(2017YFA0303701,2016YFA0202103)National Natural Science Foundation of China(91850204,11674167).Tao Li acknowledges support from Dengfeng Project B of Nanjing University.The authors have no conflicts of interest to disclose.
文摘Self-imaging is an important function for signal transport,distribution,and processing in integrated optics,which is usually implemented by multimode interference or diffractive imaging process.However,these processes suffer from the resolution limit due to classical wave propagation dynamics.We propose and demonstrate subwavelength optical imaging in one-dimensional silicon waveguide arrays,which is implemented by cascading straight and curved waveguides in sequence.The coupling coefficient between the curved waveguides is tuned to be negative to reach a negative dispersion,which is an analog to a hyperbolic metamaterial with a negative refractive index.Therefore,it endows the waveguide array with a superlens function as it is connected with a traditional straight waveguide array with positive dispersion.With a judiciously engineered cascading silicon waveguide array,we successfully show the subwavelength self-imaging process of each input port of the waveguide array as the single point source.Our approach provides a strategy for dealing with optical signals at the subwavelength scale and indicates functional designs in high-density waveguide integrations.
基金National Natural Science Foundation of China(12174186,91850204)National Key Research and Development Program of China(2017YFA0303701)。
文摘Integrated optical phased arrays(OPAs) have attracted significant interest to steer laser beams for applications including free-space communications, holography, and light detection and ranging. Although many methods have been proposed to suppress grating lobes, OPAs have also been limited by the trade-off between field of view(FOV)and beamforming efficiency. Here, we propose a metasurface empowered port-selected OPA(POPA), an OPA steered by port selection, which is implemented by an aperiodic waveguide array with an average pitch less than the wavelength and phase controlled by coupling among waveguides. A metasurface layer above the POPA was designed to increase wide FOV steering, aliasing-free by polarization division. As a result, we experimentally demonstrate beam scanning over a ±41.04° × 7.06° FOV. The aliasing-free POPA with expanded FOV shows successful incorporation of the waveguide-based OPA technique with an emerging metasurface design, indicating much exploration in concepts for integrated photonic devices.