期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Frequentist Model Averaging and Applications to Bernoulli Trials
1
作者 Georges Nguefack-Tsague walter zucchini Siméon Fotso 《Open Journal of Statistics》 2016年第3期545-553,共9页
In several instances of statistical practice, it is not uncommon to use the same data for both model selection and inference, without taking account of the variability induced by model selection step. This is usually ... In several instances of statistical practice, it is not uncommon to use the same data for both model selection and inference, without taking account of the variability induced by model selection step. This is usually referred to as post-model selection inference. The shortcomings of such practice are widely recognized, finding a general solution is extremely challenging. We propose a model averaging alternative consisting on taking into account model selection probability and the like-lihood in assigning the weights. The approach is applied to Bernoulli trials and outperforms Akaike weights model averaging and post-model selection estimators. 展开更多
关键词 Model Selection Post-Model Selection Estimator Frequentist Model Averaging Bernoulli Trials
下载PDF
Effects of Bayesian Model Selection on Frequentist Performances: An Alternative Approach
2
作者 Georges Nguefack-Tsague walter zucchini 《Applied Mathematics》 2016年第10期1103-1115,共14页
It is quite common in statistical modeling to select a model and make inference as if the model had been known in advance;i.e. ignoring model selection uncertainty. The resulted estimator is called post-model selectio... It is quite common in statistical modeling to select a model and make inference as if the model had been known in advance;i.e. ignoring model selection uncertainty. The resulted estimator is called post-model selection estimator (PMSE) whose properties are hard to derive. Conditioning on data at hand (as it is usually the case), Bayesian model selection is free of this phenomenon. This paper is concerned with the properties of Bayesian estimator obtained after model selection when the frequentist (long run) performances of the resulted Bayesian estimator are of interest. The proposed method, using Bayesian decision theory, is based on the well known Bayesian model averaging (BMA)’s machinery;and outperforms PMSE and BMA. It is shown that if the unconditional model selection probability is equal to model prior, then the proposed approach reduces BMA. The method is illustrated using Bernoulli trials. 展开更多
关键词 Model Selection Uncertainty Model Uncertainty Bayesian Model Selection Bayesian Model Averaging Bayesian Theory Frequentist Performance
下载PDF
A Mixture-Based Bayesian Model Averaging Method
3
作者 Georges Nguefack-Tsague walter zucchini 《Open Journal of Statistics》 2016年第2期220-228,共9页
Bayesian model averaging (BMA) is a popular and powerful statistical method of taking account of uncertainty about model form or assumption. Usually the long run (frequentist) performances of the resulted estimator ar... Bayesian model averaging (BMA) is a popular and powerful statistical method of taking account of uncertainty about model form or assumption. Usually the long run (frequentist) performances of the resulted estimator are hard to derive. This paper proposes a mixture of priors and sampling distributions as a basic of a Bayes estimator. The frequentist properties of the new Bayes estimator are automatically derived from Bayesian decision theory. It is shown that if all competing models have the same parametric form, the new Bayes estimator reduces to BMA estimator. The method is applied to the daily exchange rate Euro to US Dollar. 展开更多
关键词 MIXTURE Bayesian Model Selection Bayesian Model Averaging Bayesian Theory Frequentist Performance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部