聚丙烯(PP)是微流控芯片常用的加工材料,但由于PP表面非极性,表面能低,使得PP材料的微流控芯片胶粘接强度较差,难以满足使用要求。等离子体处理是聚合物表面改性常用的一种方法,系统研究了等离子体处理对于PP胶粘接强度的影响。利用光...聚丙烯(PP)是微流控芯片常用的加工材料,但由于PP表面非极性,表面能低,使得PP材料的微流控芯片胶粘接强度较差,难以满足使用要求。等离子体处理是聚合物表面改性常用的一种方法,系统研究了等离子体处理对于PP胶粘接强度的影响。利用光学接触角测量仪和扫描电子显微镜等对比分析了等离子体处理前后PP表面的接触角、自由能和微观形貌的变化,实验发现等离子体处理后PP表面去离子水的接触角由99°减小到了75°,表面自由能由31 m J/m2增大到了49 m J/m2,PP表面由疏水性变为了亲水性,并且表面出现了大量的纳米级凸起和凹坑,从而揭示了等离子体处理对于提高PP胶粘接强度的机理。对等离子体处理的工艺参数进行了优化,利用T剥离强度试验方法对PP的胶粘接强度进行了测试,PP的平均胶粘接强度提高了24%。展开更多
文摘聚丙烯(PP)是微流控芯片常用的加工材料,但由于PP表面非极性,表面能低,使得PP材料的微流控芯片胶粘接强度较差,难以满足使用要求。等离子体处理是聚合物表面改性常用的一种方法,系统研究了等离子体处理对于PP胶粘接强度的影响。利用光学接触角测量仪和扫描电子显微镜等对比分析了等离子体处理前后PP表面的接触角、自由能和微观形貌的变化,实验发现等离子体处理后PP表面去离子水的接触角由99°减小到了75°,表面自由能由31 m J/m2增大到了49 m J/m2,PP表面由疏水性变为了亲水性,并且表面出现了大量的纳米级凸起和凹坑,从而揭示了等离子体处理对于提高PP胶粘接强度的机理。对等离子体处理的工艺参数进行了优化,利用T剥离强度试验方法对PP的胶粘接强度进行了测试,PP的平均胶粘接强度提高了24%。