The focus of this study is a coastal high-resolution (2′ X 2′ ) two-waycoupled wave-tide-surge interaction model, including three main physical mechanisms. Comparisons andanalysis of simulated and measured wave heig...The focus of this study is a coastal high-resolution (2′ X 2′ ) two-waycoupled wave-tide-surge interaction model, including three main physical mechanisms. Comparisons andanalysis of simulated and measured wave heights and sea level considered two moderate storm casesfor the Huang-he Delta coastal area. The effects of different physical mechanisms on wave heightsare mainly influenced by wave-current interaction, including radiation stress. Wave-age dependentsurface wind stress and radiation stress mechanisms in the coupling wave-tide-surge interactionmodel show positive impact on sea level, and the wave-current interaction bottom stress mechanismshows negative impact on seal level. The comprehensive effects of the three main physical mechanismsshow positive net impact on seal level and increase sea level by around 20cm for the stormsconsidered. Overall, the results we show that the wave heights and sea levels simulated by thecoupled wave-tide-surge model agree better with the measured values than uncoupled model results,particularly for peak storm conditions.展开更多
文摘The focus of this study is a coastal high-resolution (2′ X 2′ ) two-waycoupled wave-tide-surge interaction model, including three main physical mechanisms. Comparisons andanalysis of simulated and measured wave heights and sea level considered two moderate storm casesfor the Huang-he Delta coastal area. The effects of different physical mechanisms on wave heightsare mainly influenced by wave-current interaction, including radiation stress. Wave-age dependentsurface wind stress and radiation stress mechanisms in the coupling wave-tide-surge interactionmodel show positive impact on sea level, and the wave-current interaction bottom stress mechanismshows negative impact on seal level. The comprehensive effects of the three main physical mechanismsshow positive net impact on seal level and increase sea level by around 20cm for the stormsconsidered. Overall, the results we show that the wave heights and sea levels simulated by thecoupled wave-tide-surge model agree better with the measured values than uncoupled model results,particularly for peak storm conditions.