The adsorption behavior and the mechanism of a novel chelate resin, amino methylene phosphonic acid resin(APAR) for Cu(Ⅱ) were investigated. Cu(Ⅱ) was quantitatively adsorbed by APAR in the medium of pH=4 09. The s...The adsorption behavior and the mechanism of a novel chelate resin, amino methylene phosphonic acid resin(APAR) for Cu(Ⅱ) were investigated. Cu(Ⅱ) was quantitatively adsorbed by APAR in the medium of pH=4 09. The statically saturated adsorption capacity is 181 mg/(g resin). Cu(Ⅱ) adsorbed on APAR can be eluted by 1 0-3 0 mol/L HCl. The rate constant is k 298 =5 58×10 -5 s -1 . The adsorption of Cu(Ⅱ) on APAR follows the Freundlich isotherm. The Δ H of the adsorption is 3 91 kJ/mol. The apparent activation energy is E a=21 4 kJ/mol. The coordination molar ratio of APAR to Cu(Ⅱ) is 1/1. It is shown that the nitrogen and the oxygen atoms in the functional group of APAR coordinate to Cu(Ⅱ).展开更多
基金Supported by Zhejiang Provincial Natural Science Foundation of China( No.2 0 0 0 72 )
文摘The adsorption behavior and the mechanism of a novel chelate resin, amino methylene phosphonic acid resin(APAR) for Cu(Ⅱ) were investigated. Cu(Ⅱ) was quantitatively adsorbed by APAR in the medium of pH=4 09. The statically saturated adsorption capacity is 181 mg/(g resin). Cu(Ⅱ) adsorbed on APAR can be eluted by 1 0-3 0 mol/L HCl. The rate constant is k 298 =5 58×10 -5 s -1 . The adsorption of Cu(Ⅱ) on APAR follows the Freundlich isotherm. The Δ H of the adsorption is 3 91 kJ/mol. The apparent activation energy is E a=21 4 kJ/mol. The coordination molar ratio of APAR to Cu(Ⅱ) is 1/1. It is shown that the nitrogen and the oxygen atoms in the functional group of APAR coordinate to Cu(Ⅱ).