PID控制策略简单、物理含义明确且适用性强,在主动电磁轴承(active magnetic bearing,AMB)系统中得到广泛应用。但是如何设计和调整控制器参数是一个实际问题。该文首先基于四自由度AMB-刚性转子系统的等效平面转子模型,给出一种简单...PID控制策略简单、物理含义明确且适用性强,在主动电磁轴承(active magnetic bearing,AMB)系统中得到广泛应用。但是如何设计和调整控制器参数是一个实际问题。该文首先基于四自由度AMB-刚性转子系统的等效平面转子模型,给出一种简单可行的PID参数整定及设计方案。然后,在PID控制下定义AMB的等效刚度和等效阻尼,并在PD控制下分析偏置电流对AMB等效刚度和等效阻尼以及转子系统临界转速的影响,通过设置“自然”刚度和“自然”阻尼并结合P与D参数对系统临界转速以及鲁棒性的影响,完成PD参数的整定及设计,并对I参数的选择做简要分析。在一个AMB转子系统上进行数值仿真和实验,结果表明按照该文提出的PID参数整定及设计原则设计的PID控制器不仅能够使转子系统实现稳定悬浮,而且还能够使转子以较小的振动通过其刚体临界转速,实现转子在0~14000r/min转速范围内的稳定运行。展开更多
文摘PID控制策略简单、物理含义明确且适用性强,在主动电磁轴承(active magnetic bearing,AMB)系统中得到广泛应用。但是如何设计和调整控制器参数是一个实际问题。该文首先基于四自由度AMB-刚性转子系统的等效平面转子模型,给出一种简单可行的PID参数整定及设计方案。然后,在PID控制下定义AMB的等效刚度和等效阻尼,并在PD控制下分析偏置电流对AMB等效刚度和等效阻尼以及转子系统临界转速的影响,通过设置“自然”刚度和“自然”阻尼并结合P与D参数对系统临界转速以及鲁棒性的影响,完成PD参数的整定及设计,并对I参数的选择做简要分析。在一个AMB转子系统上进行数值仿真和实验,结果表明按照该文提出的PID参数整定及设计原则设计的PID控制器不仅能够使转子系统实现稳定悬浮,而且还能够使转子以较小的振动通过其刚体临界转速,实现转子在0~14000r/min转速范围内的稳定运行。