交互式数据探索是一组多样的发现式应用程序的关键技术,着重于交互、探索和发现;在许多场景和领域中广泛应用.以海量的学术文献数据探索为背景,对交互式数据探索的特征自适应技术进行研究.首先,提出一种适用于面向学术文献数据探索的特...交互式数据探索是一组多样的发现式应用程序的关键技术,着重于交互、探索和发现;在许多场景和领域中广泛应用.以海量的学术文献数据探索为背景,对交互式数据探索的特征自适应技术进行研究.首先,提出一种适用于面向学术文献数据探索的特征自适应交互式数据探索框架FA-IDE(feature-adaptive interactive data exploration),在每次迭代过程中动态地调整特征子集,以满足用户兴趣多样性的需求.其次,针对该框架,提出特征子集的均匀度BFS(balance of feature subsets)评价准则,并给出了基于BFS的序列前向特征选择算法.再次,针对相关样本发现问题,提出划分等级建立方法,根据决策树模型对用户兴趣区域划分后,提出基于相似度的结果集排序策略.实验结果表明,所提出方法可有效提高用户探索效率和最终结果的准确性.展开更多
针对法向信息缺失和采样点缺失的带有洞的散乱点云数据,提出了一种高效、高质量的多层同步表面重建方法.首先利用动态等高线检测出含有洞的八叉树节点,并且基于HPR(hidden point removal)映射计算出八叉树顶点的内外状态,建立带有顶点...针对法向信息缺失和采样点缺失的带有洞的散乱点云数据,提出了一种高效、高质量的多层同步表面重建方法.首先利用动态等高线检测出含有洞的八叉树节点,并且基于HPR(hidden point removal)映射计算出八叉树顶点的内外状态,建立带有顶点内外标识的空间有向状态八叉树,然后基于八叉树节点内法向测试方法保证基于k近邻表面重建过程中采样点的法向的正确性,且该空间有向状态八叉树可以支持不同层次的点云同步重建,在保证重建结果正确性的前提下,提高重建效率.展开更多
文摘交互式数据探索是一组多样的发现式应用程序的关键技术,着重于交互、探索和发现;在许多场景和领域中广泛应用.以海量的学术文献数据探索为背景,对交互式数据探索的特征自适应技术进行研究.首先,提出一种适用于面向学术文献数据探索的特征自适应交互式数据探索框架FA-IDE(feature-adaptive interactive data exploration),在每次迭代过程中动态地调整特征子集,以满足用户兴趣多样性的需求.其次,针对该框架,提出特征子集的均匀度BFS(balance of feature subsets)评价准则,并给出了基于BFS的序列前向特征选择算法.再次,针对相关样本发现问题,提出划分等级建立方法,根据决策树模型对用户兴趣区域划分后,提出基于相似度的结果集排序策略.实验结果表明,所提出方法可有效提高用户探索效率和最终结果的准确性.
文摘针对法向信息缺失和采样点缺失的带有洞的散乱点云数据,提出了一种高效、高质量的多层同步表面重建方法.首先利用动态等高线检测出含有洞的八叉树节点,并且基于HPR(hidden point removal)映射计算出八叉树顶点的内外状态,建立带有顶点内外标识的空间有向状态八叉树,然后基于八叉树节点内法向测试方法保证基于k近邻表面重建过程中采样点的法向的正确性,且该空间有向状态八叉树可以支持不同层次的点云同步重建,在保证重建结果正确性的前提下,提高重建效率.