为解决现有翼型几何参数化描述方法优化设计效率低、计算工作量大的问题,提出了一种基于深度学习的翼型参数化建模方法。该方法以伊利诺伊大学厄巴纳-香槟分校(University of Illinois at Urbana-Champaign,UIUC)翼型数据库中翼型上下...为解决现有翼型几何参数化描述方法优化设计效率低、计算工作量大的问题,提出了一种基于深度学习的翼型参数化建模方法。该方法以伊利诺伊大学厄巴纳-香槟分校(University of Illinois at Urbana-Champaign,UIUC)翼型数据库中翼型上下表面坐标点转化的翼型二维图像作为输入,首先使用卷积运算提取大量翼型图像的几何特征,然后通过多层感知机对提取的几何特征进行分类和压缩,将翼型形状压缩成若干个简化的拟合参数,最后通过解码器恢复翼型图像并输出翼型上下表面的点坐标。在此基础上,探讨了拟合参数数量对翼型几何精度的影响,确定了含6个拟合参数的卷积神经网络(convolutional neural network,CNN)结构,并基于计算流体力学数值仿真验证了所提出方法的拟合精度。最后,开发了可视化翼型几何设计软件,实现了拟合参数的调整与修正,并分析了各拟合参数对翼型形状的影响规律。结果表明,6个拟合参数均会对翼型形状产生全局影响,单独或联合调整6个拟合参数可获得新的翼型设计空间。研究结果可为翼型的优化设计提供技术支持与理论参考。展开更多
文摘为解决现有翼型几何参数化描述方法优化设计效率低、计算工作量大的问题,提出了一种基于深度学习的翼型参数化建模方法。该方法以伊利诺伊大学厄巴纳-香槟分校(University of Illinois at Urbana-Champaign,UIUC)翼型数据库中翼型上下表面坐标点转化的翼型二维图像作为输入,首先使用卷积运算提取大量翼型图像的几何特征,然后通过多层感知机对提取的几何特征进行分类和压缩,将翼型形状压缩成若干个简化的拟合参数,最后通过解码器恢复翼型图像并输出翼型上下表面的点坐标。在此基础上,探讨了拟合参数数量对翼型几何精度的影响,确定了含6个拟合参数的卷积神经网络(convolutional neural network,CNN)结构,并基于计算流体力学数值仿真验证了所提出方法的拟合精度。最后,开发了可视化翼型几何设计软件,实现了拟合参数的调整与修正,并分析了各拟合参数对翼型形状的影响规律。结果表明,6个拟合参数均会对翼型形状产生全局影响,单独或联合调整6个拟合参数可获得新的翼型设计空间。研究结果可为翼型的优化设计提供技术支持与理论参考。