Thermal barrier coatings(TBCs)can effectively protect the alloy substrate of hot components in aeroengines or land-based gas turbines by the thermal insulation and corrosion/erosion resistance of the ceramic top coat....Thermal barrier coatings(TBCs)can effectively protect the alloy substrate of hot components in aeroengines or land-based gas turbines by the thermal insulation and corrosion/erosion resistance of the ceramic top coat.However,the continuous pursuit of a higher operating temperature leads to degradation,delamination,and premature failure of the top coat.Both new ceramic materials and new coating structures must be developed to meet the demand for future advanced TBC systems.In this paper,the latest progress of some new ceramic materials is first reviewed.Then,a comprehensive spalling mechanism of the ceramic top coat is summarized to understand the dependence of lifetime on various factors such as oxidation scale growth,ceramic sintering,erosion,and calcium–magnesium–aluminium–silicate(CMAS)molten salt corrosion.Finally,new structural design methods for high-performance TBCs are discussed from the perspectives of lamellar,columnar,and nanostructure inclusions.The latest developments of ceramic top coat will be presented in terms of material selection,structural design,and failure mechanism,and the comprehensive guidance will be provided for the development of next-generation advanced TBCs with higher temperature resistance,better thermal insulation,and longer lifetime.展开更多
Background The preclinical experiments and studies of congener drugs show icotinib, a new epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, can specifically bind to the tyrosine kinase domain of the...Background The preclinical experiments and studies of congener drugs show icotinib, a new epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, can specifically bind to the tyrosine kinase domain of the EGFR, block the EGFR related signal, thereby inhibit the growth of tumor cell. The objective of this study was to investigate the safety, tolerability and dose-related biologic effects of icotinib in patients with non-small cell lung cancer (NSCLC) in a Chinese patient population. Methods This was an open-label, phase I, dose escalation, safety/tolerability trial of oral icotinib (100 to 400 mg), administered twice per day for 28-continuous-day cycles until disease progression or undue toxicity. Results Forty patients with stage IIIB (15%) or IV (85%) NSCLC were included in the study. They had mainly adenocarcinoma (85%), with a performance status (PS) of 0 (45%) or 1 (55%) and less than half the patients (45%) had histories of smoking and all were pretreated by at least one regimen of chemotherapy. Patients were assigned to three dose levels of 150 mg b.i.d, 200 mg b.i.d, or 125 mg t.i.d. The follow-up periods ranged from 5 to 80 weeks. Adverse events were found in 35% patients, most of which were mild and reversible. The adverse events mainly occurred in the first 4 weeks and included rash (25%), diarrhea, nausea and abdominal distention. One definite interstitial lung disease (ILD) was found in a patient in the dose of 200 mg b.i.d. According to an 8-week assessment, one (2.5%) patient receiving 150 mg gained complete response (CR) that persisted for 44 weeks, seven (17.50%) patients had partial remission (PR), and 18 (45%) patients had stable disease (SD). The objective response including CR+PR was 20%. The median time of progression-free survival for the 40 patients was 20 weeks (range: 12 to 32 weeks). The response was not affected by pathological type, history of smoking, or numbers of previous therapeutic regimens.展开更多
We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase lockin...We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.展开更多
To achieve real-time and high-sensitive humidity sensing,a universal method was developed to allow arbitrary nanocrystals to be attached to the end of an optical fiber,further producing an effective interference spect...To achieve real-time and high-sensitive humidity sensing,a universal method was developed to allow arbitrary nanocrystals to be attached to the end of an optical fiber,further producing an effective interference spectrum.To validate this approach,four classical metal-organic framework(MOF) materials(ZIF-8,UiO-66,HKUST-1,MIL-101) are connected to the end of a single-mode optical fiber by this connection method to form humidity sensors.展开更多
Nanostructured WC-12Co coatings were deposited by high velocity oxy-fuel (HVOF) spraying with an agglomerated powder. The effect of flame conditions on the microstructure of the nanostructured coatings was investigate...Nanostructured WC-12Co coatings were deposited by high velocity oxy-fuel (HVOF) spraying with an agglomerated powder. The effect of flame conditions on the microstructure of the nanostructured coatings was investigated. The wear properties of the coatings were characterized using a dry rubber-wheel wear test. The results show that the nanostructured WC-Co coatings consist of WC, W2C, W and an amorphous binder phase. The microstructure of the coating is significantly influenced by the ratio of oxygen flow to fuel flow. Under the lower ratio of oxygen/fuel flow, the nanostructured coating presents a relative dense microstructure and severe decarburization of WC phase occurs during spraying. With increasing ratio of oxygen/fuel flow, the bonding of WC particles in the coating becomes loose resulting from the original structure of feedstock and the decarburization of WC becomes less owing to limited heating to the powder. Both the decarburization of WC particles in spraying and the bonding among WC particles in the coatings affect the wear performance. The examination of the worn surfaces of the nanostructured coatings reveals that the dominant wear mechanisms would be spalling from the interface of WCCo splats when spray particles undergo a limited melting. While the melting state of the spray particles is improved,the dominant wear mechanisms become the plastic deformation and plowing of the matrix and spalling of WC particles from the matrix.展开更多
Many marine bacteria are difcult to culture because they are dormant,rare or found in low-abundances.Enrichment culturing has been widely tested as an important strategy to isolate rare or dormant microbes.However,man...Many marine bacteria are difcult to culture because they are dormant,rare or found in low-abundances.Enrichment culturing has been widely tested as an important strategy to isolate rare or dormant microbes.However,many more mechanisms remain uncertain.Here,based on 16S rRNA gene high-throughput sequencing and metabolomics technology,it was found that the short-chain fatty acids(SCFAs)in metabolites were signifcantly correlated with uncultured bacterial groups during enrichment cultures.A pure culture analysis showed that the addition of SCFAs to media also resulted in high efciency for the isolation of uncultured strains from marine sediments.As a result,238 strains belonging to 10 phyla,26 families and 82 species were successfully isolated.Some uncultured rare taxa within Chlorobi and Kiritimatiellaeota were successfully cultured.Amongst the newly isolated uncultured microbes,most genomes,e.g.bacteria,possess SCFA oxidative degradation genes,and these features might aid these microbes in better adapting to the culture media.A further resuscitation analysis of a viable but non-culturable(VBNC)Marinilabiliales strain verifed that the addition of SCFAs could break the dormancy of Marinilabiliales in 5 days,and the growth curve test showed that the SCFAs could shorten the lag phase and increase the growth rate.Overall,this study provides new insights into SCFAs,which were frst studied as resuscitation factors in uncultured marine bacteria.Thus,this study can help improve the utilisation and excavation of marine microbial resources,especially for the most-wanted or key players.展开更多
文摘Thermal barrier coatings(TBCs)can effectively protect the alloy substrate of hot components in aeroengines or land-based gas turbines by the thermal insulation and corrosion/erosion resistance of the ceramic top coat.However,the continuous pursuit of a higher operating temperature leads to degradation,delamination,and premature failure of the top coat.Both new ceramic materials and new coating structures must be developed to meet the demand for future advanced TBC systems.In this paper,the latest progress of some new ceramic materials is first reviewed.Then,a comprehensive spalling mechanism of the ceramic top coat is summarized to understand the dependence of lifetime on various factors such as oxidation scale growth,ceramic sintering,erosion,and calcium–magnesium–aluminium–silicate(CMAS)molten salt corrosion.Finally,new structural design methods for high-performance TBCs are discussed from the perspectives of lamellar,columnar,and nanostructure inclusions.The latest developments of ceramic top coat will be presented in terms of material selection,structural design,and failure mechanism,and the comprehensive guidance will be provided for the development of next-generation advanced TBCs with higher temperature resistance,better thermal insulation,and longer lifetime.
文摘Background The preclinical experiments and studies of congener drugs show icotinib, a new epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, can specifically bind to the tyrosine kinase domain of the EGFR, block the EGFR related signal, thereby inhibit the growth of tumor cell. The objective of this study was to investigate the safety, tolerability and dose-related biologic effects of icotinib in patients with non-small cell lung cancer (NSCLC) in a Chinese patient population. Methods This was an open-label, phase I, dose escalation, safety/tolerability trial of oral icotinib (100 to 400 mg), administered twice per day for 28-continuous-day cycles until disease progression or undue toxicity. Results Forty patients with stage IIIB (15%) or IV (85%) NSCLC were included in the study. They had mainly adenocarcinoma (85%), with a performance status (PS) of 0 (45%) or 1 (55%) and less than half the patients (45%) had histories of smoking and all were pretreated by at least one regimen of chemotherapy. Patients were assigned to three dose levels of 150 mg b.i.d, 200 mg b.i.d, or 125 mg t.i.d. The follow-up periods ranged from 5 to 80 weeks. Adverse events were found in 35% patients, most of which were mild and reversible. The adverse events mainly occurred in the first 4 weeks and included rash (25%), diarrhea, nausea and abdominal distention. One definite interstitial lung disease (ILD) was found in a patient in the dose of 200 mg b.i.d. According to an 8-week assessment, one (2.5%) patient receiving 150 mg gained complete response (CR) that persisted for 44 weeks, seven (17.50%) patients had partial remission (PR), and 18 (45%) patients had stable disease (SD). The objective response including CR+PR was 20%. The median time of progression-free survival for the 40 patients was 20 weeks (range: 12 to 32 weeks). The response was not affected by pathological type, history of smoking, or numbers of previous therapeutic regimens.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12103059,12033007,12303077,and 12303076)the Fund from the Xi’an Science and Technology Bureau,China(Grant No.E019XK1S04)the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.1188000XGJ).
文摘We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.
基金financially supported by Hainan Province Science and Technology Special Fund (No. ZDYF2022S HFZ090)the National Natural Science Foundation of China (Nos.22061014,62175054 and 61865005)+1 种基金Hainan University start-up fund (No.KYQ(ZR)1806)the Open Project Program of Wuhan National Laboratory for Optoelectronics (No.2020WNLOKF001)。
文摘To achieve real-time and high-sensitive humidity sensing,a universal method was developed to allow arbitrary nanocrystals to be attached to the end of an optical fiber,further producing an effective interference spectrum.To validate this approach,four classical metal-organic framework(MOF) materials(ZIF-8,UiO-66,HKUST-1,MIL-101) are connected to the end of a single-mode optical fiber by this connection method to form humidity sensors.
文摘Nanostructured WC-12Co coatings were deposited by high velocity oxy-fuel (HVOF) spraying with an agglomerated powder. The effect of flame conditions on the microstructure of the nanostructured coatings was investigated. The wear properties of the coatings were characterized using a dry rubber-wheel wear test. The results show that the nanostructured WC-Co coatings consist of WC, W2C, W and an amorphous binder phase. The microstructure of the coating is significantly influenced by the ratio of oxygen flow to fuel flow. Under the lower ratio of oxygen/fuel flow, the nanostructured coating presents a relative dense microstructure and severe decarburization of WC phase occurs during spraying. With increasing ratio of oxygen/fuel flow, the bonding of WC particles in the coating becomes loose resulting from the original structure of feedstock and the decarburization of WC becomes less owing to limited heating to the powder. Both the decarburization of WC particles in spraying and the bonding among WC particles in the coatings affect the wear performance. The examination of the worn surfaces of the nanostructured coatings reveals that the dominant wear mechanisms would be spalling from the interface of WCCo splats when spray particles undergo a limited melting. While the melting state of the spray particles is improved,the dominant wear mechanisms become the plastic deformation and plowing of the matrix and spalling of WC particles from the matrix.
基金This work was supported by the National Natural Science Foundation of China(41876166)Natural Science Foundation of Shandong Province,China(Grant No.ZR2022QD126)Science and Technology Fundamental Resources Investigation Program(Grant No.2022FY101100,2019FY100700).
文摘Many marine bacteria are difcult to culture because they are dormant,rare or found in low-abundances.Enrichment culturing has been widely tested as an important strategy to isolate rare or dormant microbes.However,many more mechanisms remain uncertain.Here,based on 16S rRNA gene high-throughput sequencing and metabolomics technology,it was found that the short-chain fatty acids(SCFAs)in metabolites were signifcantly correlated with uncultured bacterial groups during enrichment cultures.A pure culture analysis showed that the addition of SCFAs to media also resulted in high efciency for the isolation of uncultured strains from marine sediments.As a result,238 strains belonging to 10 phyla,26 families and 82 species were successfully isolated.Some uncultured rare taxa within Chlorobi and Kiritimatiellaeota were successfully cultured.Amongst the newly isolated uncultured microbes,most genomes,e.g.bacteria,possess SCFA oxidative degradation genes,and these features might aid these microbes in better adapting to the culture media.A further resuscitation analysis of a viable but non-culturable(VBNC)Marinilabiliales strain verifed that the addition of SCFAs could break the dormancy of Marinilabiliales in 5 days,and the growth curve test showed that the SCFAs could shorten the lag phase and increase the growth rate.Overall,this study provides new insights into SCFAs,which were frst studied as resuscitation factors in uncultured marine bacteria.Thus,this study can help improve the utilisation and excavation of marine microbial resources,especially for the most-wanted or key players.