Impurity doping is an effective approach to tuning the optoelectronic performance of host materials by imparting extrinsic electronic channels.Herein,a family of lanthanide(Ln^(3+))ions was successfully incorporated i...Impurity doping is an effective approach to tuning the optoelectronic performance of host materials by imparting extrinsic electronic channels.Herein,a family of lanthanide(Ln^(3+))ions was successfully incorporated into a Bi:Cs_(2)AgInCl_(6) lead-free double-perovskite(DP)semiconductor,expanding the spectral range from visible(Vis)to near-infrared(NIR)and improving the photoluminescence quantum yield(PLQY).After multidoping with Nd,Yb,Er and Tm,Bi/Ln:Cs_(2)AgInCl_(6) yielded an ultrabroadband continuous emission spectrum with a full width at half-maximum of~365 nm originating from intrinsic self-trapped exciton recombination and abundant 4f-4f transitions of the Ln^(3+)dopants.Steady-state and transient-state spectra were used to ascertain the energy transfer and emissive processes.To avoid adverse energy interactions between the various Ln^(3+)ions in a single DP host,a heterogeneous architecture was designed to spatially confine different Ln^(3+)dopants via a“DP-in-glass composite”(DiG)structure.This bottom-up strategy endowed the prepared Ln^(3+)-doped DIG with a high PLQY of 40%(nearly three times as high as that of the multidoped DP)and superior long-term stability.Finally,a compact Vis-NIR ultrabroadband(400~2000 nm)light source was easily fabricated by coupling the DiG with a commercial UV LED chip,and this light source has promising applications in nondestructive spectroscopic analyses and multifunctional lighting.展开更多
For protonic ceramic fuel cells,it is key to develop material with high intrinsic activity for oxygen activation and bulk proton conductivity enabling water formation at entire electrode surface.However,a higher water...For protonic ceramic fuel cells,it is key to develop material with high intrinsic activity for oxygen activation and bulk proton conductivity enabling water formation at entire electrode surface.However,a higher water content which benefitting for the increasing proton conductivity will not only dilute the oxygen in the gas,but also suppress the O_(2)adsorption on the electrode surface.Herein,a new electrode design concept is proposed,that may overcome this dilemma.By introducing a second phase with high-hydrating capability into a conventional cobalt-free perovskite to form a unique nanocomposite electrode,high proton conductivity/concentration can be reached at low water content in atmosphere.In addition,the hydronation creates additional fast proton transport channel along the two-phase interface.As a result,high protonic conductivity is reached,leading to a new breakthrough in performance for proton ceramic fuel cells and electrolysis cells devices among available air electrodes.展开更多
Near-infrared(NIR)phosphor-converted light-emitting diodes/laser diodes(LEDs/LDs)are prospective lighting sources for NIR spectroscopy.However,developing NIR phosphor materials with desired thermal robustness and high...Near-infrared(NIR)phosphor-converted light-emitting diodes/laser diodes(LEDs/LDs)are prospective lighting sources for NIR spectroscopy.However,developing NIR phosphor materials with desired thermal robustness and high photoelectric efficiency is a crucial challenge for their applications.In this work,based on the cationic radius matching effect,a series of(Lu,Y)_(3)(Al,Sc,Cr)_(2)Al_(3)O_(12)NIR phosphor ceramics(LuYScCr NIR-PCs)were fabricated by vacuum sintering.Excellent thermal stability(95%@150℃)was obtained in the prepared NIR-PCs,owing to their weak electron-phonon coupling effect(small Huang-Rhys factor).Being excited at 460 nm,NIR-PCs realized a broadband emission(650-850 nm)with internal quantum efficiency(IQE)of 60.68%.Combining NIR-PCs with LED/LD chips,the maximum output power of the encapsulated LED prototype was 447 mW@300 mA with photoelectric efficiency of as high as 18.6%@180 mA,and the maximum output power of the LD prototype was 814 mW@2.5 A.The working temperatures of NIR-PCs were 70.8℃@300 mA(LED)and 102.8℃@3 A(LD).Finally,the prepared NIR-PCs applied in food detection were verified in this study,demonstrating their anticipated application prospects in the future.展开更多
Particle velocimetry based on the temporal feature of upconversion luminescent nanocrystals is a newly-raising fluid velocimetry.Exploiting the availability to low flow rate fluid and exempting redundance external cal...Particle velocimetry based on the temporal feature of upconversion luminescent nanocrystals is a newly-raising fluid velocimetry.Exploiting the availability to low flow rate fluid and exempting redundance external calibration(achieving once calibration for all)are highly expected and challenging.Herein,an engineered core–shell nano-probe,NaYF4:Yb/Ho/Ce@NaGdF4,was proposed,in which the Ce3+ions were utilized to manipulate the upconversion dynamic of Ho3+.Through optimization,a superior sensitive against low-speed flow is achieved,and the external calibrations before each operation can be avoided.Application demonstrations were conducted on a fluid circulation system with controllable flow rate.The fluid velocity was monitored successfully,no matter it is permanent,or cyclically variating(imitating the in vivo arterial blood).Moreover,this velocimetric route is competent in spatial scanning for handling the spatially inhomogeneous velocity field.Such sensing nanomaterial and fluid velocimetric method exhibit promising application potential in human blood velocimetry,industrial control,or environmental monitoring.展开更多
Recently,high-performance color converters excitable by blue laser diode(LD)have sprung up for projection displays.However,the thermal accumulation effect of the color converters is a non-negligible problem under high...Recently,high-performance color converters excitable by blue laser diode(LD)have sprung up for projection displays.However,the thermal accumulation effect of the color converters is a non-negligible problem under high-power LD irradiation.Herein,we developed novel opto-functional composites(patterned CaAlSiN3:Eu^(2+)phosphor-in-glass film–Y_(3)Al_(5)O_(12):Ce^(3+)phosphor-in-glass film@Al_(2)O_(3)plate with aluminum"heat sink")via a thermal management methodology of combining"phosphor wheel"and"heat sink"for a lighting source of highpower laser projection displays.This new composite design makes it effective to transport generated thermal phonons away to reduce the thermal ionization process,and to yield stable and high-quality white light with brightness of 4510 lm@43 W,luminous efficacy of 105 lm/W,correlated color temperature of 3541 K,and color rendering index of 80.0.Furthermore,the phosphor-in-glass film-converted laser projection system was also successfully designed,showing a more vivid color effect compared to a traditional LED-based projector.This work emphasizes the importance of the thermal management upon high-power laser irradiation,and hopefully facilitates the development of a new LD-driven lighting source for high-power laser projection displays.展开更多
基金This research was supported by the National Natural Science Foundation of China(51972060,U1805252,and 22135008)the Fujian Science&Technology Innovation Laboratory for Optoelectronic Information(2021ZZ126)the Natural Science Foundation of Fujian Province(2020J02017,2021L3024).
文摘Impurity doping is an effective approach to tuning the optoelectronic performance of host materials by imparting extrinsic electronic channels.Herein,a family of lanthanide(Ln^(3+))ions was successfully incorporated into a Bi:Cs_(2)AgInCl_(6) lead-free double-perovskite(DP)semiconductor,expanding the spectral range from visible(Vis)to near-infrared(NIR)and improving the photoluminescence quantum yield(PLQY).After multidoping with Nd,Yb,Er and Tm,Bi/Ln:Cs_(2)AgInCl_(6) yielded an ultrabroadband continuous emission spectrum with a full width at half-maximum of~365 nm originating from intrinsic self-trapped exciton recombination and abundant 4f-4f transitions of the Ln^(3+)dopants.Steady-state and transient-state spectra were used to ascertain the energy transfer and emissive processes.To avoid adverse energy interactions between the various Ln^(3+)ions in a single DP host,a heterogeneous architecture was designed to spatially confine different Ln^(3+)dopants via a“DP-in-glass composite”(DiG)structure.This bottom-up strategy endowed the prepared Ln^(3+)-doped DIG with a high PLQY of 40%(nearly three times as high as that of the multidoped DP)and superior long-term stability.Finally,a compact Vis-NIR ultrabroadband(400~2000 nm)light source was easily fabricated by coupling the DiG with a commercial UV LED chip,and this light source has promising applications in nondestructive spectroscopic analyses and multifunctional lighting.
基金supported from the National Key R&D Program of China(No.2022YFB4002502)National Natural Science Foundation of China under(No.22278203,22279057)+4 种基金the Jiangsu Funding Program for Excellent Postdoctoral Talentthe Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)support from the Max Planck-POSTECH-Hsinchu Center for Complex Phase Materialssupport from the Fulbright Foundation Global Scholars Programthe U.S.Army Research Office under grant number W911NF-17-5401-0051
文摘For protonic ceramic fuel cells,it is key to develop material with high intrinsic activity for oxygen activation and bulk proton conductivity enabling water formation at entire electrode surface.However,a higher water content which benefitting for the increasing proton conductivity will not only dilute the oxygen in the gas,but also suppress the O_(2)adsorption on the electrode surface.Herein,a new electrode design concept is proposed,that may overcome this dilemma.By introducing a second phase with high-hydrating capability into a conventional cobalt-free perovskite to form a unique nanocomposite electrode,high proton conductivity/concentration can be reached at low water content in atmosphere.In addition,the hydronation creates additional fast proton transport channel along the two-phase interface.As a result,high protonic conductivity is reached,leading to a new breakthrough in performance for proton ceramic fuel cells and electrolysis cells devices among available air electrodes.
基金The authors acknowledge the generous financial support from the National Natural Science Foundation of China(Nos.52302139,61973103,52272141,and 51972060)Doctoral Foundation Project of Henan University of Technology(No.2021BS069)+3 种基金Natural Science Foundation of Henan Province Youth Fund(No.222300420039)the Key Science and Technology Program of Henan Province(Nos.222102210023 and 232102211074)Project of Songshan Laboratory(No.YYJC072022020)Key Specialized Research of Zhengzhou Science and Technology Innovation Cooperation(No.21ZZXTCX01).
文摘Near-infrared(NIR)phosphor-converted light-emitting diodes/laser diodes(LEDs/LDs)are prospective lighting sources for NIR spectroscopy.However,developing NIR phosphor materials with desired thermal robustness and high photoelectric efficiency is a crucial challenge for their applications.In this work,based on the cationic radius matching effect,a series of(Lu,Y)_(3)(Al,Sc,Cr)_(2)Al_(3)O_(12)NIR phosphor ceramics(LuYScCr NIR-PCs)were fabricated by vacuum sintering.Excellent thermal stability(95%@150℃)was obtained in the prepared NIR-PCs,owing to their weak electron-phonon coupling effect(small Huang-Rhys factor).Being excited at 460 nm,NIR-PCs realized a broadband emission(650-850 nm)with internal quantum efficiency(IQE)of 60.68%.Combining NIR-PCs with LED/LD chips,the maximum output power of the encapsulated LED prototype was 447 mW@300 mA with photoelectric efficiency of as high as 18.6%@180 mA,and the maximum output power of the LD prototype was 814 mW@2.5 A.The working temperatures of NIR-PCs were 70.8℃@300 mA(LED)and 102.8℃@3 A(LD).Finally,the prepared NIR-PCs applied in food detection were verified in this study,demonstrating their anticipated application prospects in the future.
基金This research was supported by National Natural Science Foundation of China(Nos.12074068,51972060,22103013,and 52102159)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information(No.2021ZZ126)Natural Science Foundation of Fujian Province(Nos.2021J06021,2021J01184,2021J01187,and 2020J02017).
文摘Particle velocimetry based on the temporal feature of upconversion luminescent nanocrystals is a newly-raising fluid velocimetry.Exploiting the availability to low flow rate fluid and exempting redundance external calibration(achieving once calibration for all)are highly expected and challenging.Herein,an engineered core–shell nano-probe,NaYF4:Yb/Ho/Ce@NaGdF4,was proposed,in which the Ce3+ions were utilized to manipulate the upconversion dynamic of Ho3+.Through optimization,a superior sensitive against low-speed flow is achieved,and the external calibrations before each operation can be avoided.Application demonstrations were conducted on a fluid circulation system with controllable flow rate.The fluid velocity was monitored successfully,no matter it is permanent,or cyclically variating(imitating the in vivo arterial blood).Moreover,this velocimetric route is competent in spatial scanning for handling the spatially inhomogeneous velocity field.Such sensing nanomaterial and fluid velocimetric method exhibit promising application potential in human blood velocimetry,industrial control,or environmental monitoring.
基金supported by National Key R&D Program of China(No.2021YFB3500503)National Natural Science Foundation of China(Nos.52272141,51972060,12074068,52102159,and 22103013)Natural Science Foundation of FujianProvince(Nos.2022J05091,2020J02017,2021J06021,2021J01190,and 2020J01931).
文摘Recently,high-performance color converters excitable by blue laser diode(LD)have sprung up for projection displays.However,the thermal accumulation effect of the color converters is a non-negligible problem under high-power LD irradiation.Herein,we developed novel opto-functional composites(patterned CaAlSiN3:Eu^(2+)phosphor-in-glass film–Y_(3)Al_(5)O_(12):Ce^(3+)phosphor-in-glass film@Al_(2)O_(3)plate with aluminum"heat sink")via a thermal management methodology of combining"phosphor wheel"and"heat sink"for a lighting source of highpower laser projection displays.This new composite design makes it effective to transport generated thermal phonons away to reduce the thermal ionization process,and to yield stable and high-quality white light with brightness of 4510 lm@43 W,luminous efficacy of 105 lm/W,correlated color temperature of 3541 K,and color rendering index of 80.0.Furthermore,the phosphor-in-glass film-converted laser projection system was also successfully designed,showing a more vivid color effect compared to a traditional LED-based projector.This work emphasizes the importance of the thermal management upon high-power laser irradiation,and hopefully facilitates the development of a new LD-driven lighting source for high-power laser projection displays.