Dentin bonding is a dynamic process that involves the penetration of adhesive resin monomers into the extrafibrillar and intrafibrillar demineralized collagen matrix using a wet-bonding technique.However,adhesive resi...Dentin bonding is a dynamic process that involves the penetration of adhesive resin monomers into the extrafibrillar and intrafibrillar demineralized collagen matrix using a wet-bonding technique.However,adhesive resin monomers lack the capacity to infiltrate the intrafibrillar space,and the excess water that is introduced by the wet-bonding technique remains at the bonding interface.This imperfectly bonded interface is inclined to hydrolytic degradation,severely jeopardizing the longevity of bonded clinical restorations.The present study introduces a dentin bonding scheme based on a dry-bonding technique,combined with the use of extrafibrillar demineralization and a collagen-reactive monomer(CRM)-based adhesive(CBA).Selective extrafibrillar demineralization was achieved using 1-wt%high-molecular weight(MW)carboxymethyl chitosan(CMCS)within a clinically acceptable timeframe to create a less aggressive bonding substance for dentin bonding due to its selectively extrafibrillar demineralization capacity.CMCS demineralization decreased the activation of in situ collagenase,improved the shrinking resistance of demineralized collagen,and thus provided stronger and more durable bonding than traditional phosphoric acid etching.The new dentin bonding scheme that contained CMCS and CBA and used a dry-bonding technique achieved an encouraging dentin bonding strength and durability with low technical sensitivity.This bonding scheme can be used to improve the stability of the resin-dentin interface and foster the longevity of bonded clinical restorations.展开更多
Mechanicalalloyingof Fex Mo1 x( x = 0 2 0 9) with blend elements Fe and Mo powders havebeen performedina highenergyplantball. Theresultsindicatedthatthesolubilityof Fein Moor Moin Feis morethen 20at.% andthecompo...Mechanicalalloyingof Fex Mo1 x( x = 0 2 0 9) with blend elements Fe and Mo powders havebeen performedina highenergyplantball. Theresultsindicatedthatthesolubilityof Fein Moor Moin Feis morethen 20at.% andthecomposition x ofamorphousofthissystem is in therangeof0 4 0 7 . Accordingtothethermodynamicpropertiesfortheamorphousformofalloys,thecomposition range of amorphous form for Fe Mosystem hasbeen investigatedwith Miedematheory. Thetheoreticalresults arein reasonable with experimental data.展开更多
In the Hefei Light Source (HLS) storage ring, multibunch operation is used to obtain a high luminosity. Multibunch instabilities can severely limit light source performance with a variety of negative impacts, includ...In the Hefei Light Source (HLS) storage ring, multibunch operation is used to obtain a high luminosity. Multibunch instabilities can severely limit light source performance with a variety of negative impacts, including beam loss, low injection efficiency, and overall degradation of the beam quality. Instabilities of a multibunch beam can be mitigated using certain techniques including increasing natural damping (operating at a higher energy), lowering the beam current, and increasing Landau damping. However, these methods are not adequate to stabilize a multibunch electron beam at a low energy and with a high current. In order to combat beam instabilities in the HLS storage ring, active feedback systems including a longitudinal feedback system (LFB) and a transverse feedback system (TFB) will be developed as part of the HLS upgrade project, the HLS-Ⅱ storage ring project. As a key component of the longitudinal bunch-by-bunch feedback system, an LFB kicker cavity with a wide bandwidth and high shunt impedance is required. In this paper we report our work on the design of the LFB kicker cavity for the HLS-Ⅱ storage ring and present the new tuning and optimization techniques developed in designing this high performance LFB kicker.展开更多
The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers(FELs), and the High Intensity Gamma-ray Source(HIGS). It is operated with a beam current ranging from about1 m...The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers(FELs), and the High Intensity Gamma-ray Source(HIGS). It is operated with a beam current ranging from about1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors(BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.展开更多
In this paper,we investigate the possibility of using the heterogeneous materials,with cuboid metallic inclusions inside a dielectric substrate(host)to control the effective permittivity.We find that in the gigahertz ...In this paper,we investigate the possibility of using the heterogeneous materials,with cuboid metallic inclusions inside a dielectric substrate(host)to control the effective permittivity.We find that in the gigahertz range,such a material demonstrates a significantly larger permittivity compared to the pure dielectric substrate.Three principal orientations of microscale cuboid inclusions have been taken into account in this study.The highest permittivity is observed when the orientation provides the largest polarization(electric dipole moment).The detrimental side effect of the metallic inclusion,which leads to the decrease of the effective magnetic permeability,can be suppressed by the proper choice of shape and orientation of the inclusions.This choice can in fact reduce the induced current and hence maximize the permeability.The dissipative losses are shown to be negligible in the relevant range of frequencies and cuboid dimensions.展开更多
A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detecto...A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detector construction is still underway,half of the KM2A array has been operating stably since the end of 2019.In this paper,we present the KM2A data analysis pipeline and the first observation of the Crab Nebula,a standard candle in very high energy γ-ray astronomy.We detect γ-ray signals from the Crab Nebula in both energy ranges of 10-100 TeV and>100 TeV with high significance,by analyzing the KM2A data of 136 live days between December 2019 and May 2020.With the observations,we test the detector performance,including angular resolution,pointing accuracy and cosmic-ray background rejection power.The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE=(1.13±0.05stat±0.08sys)×10^(-14).(E/20 TeV)-309±0.06stat±0.02syscm^(-2) s^(-1) TeV^(-1).It is consistent with previous measurements by other experiments.This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena,such as cosmic PeVatrons,might be discovered.展开更多
The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard ...The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle.The WCDA-1 achieves a sensitivity of 65 mCU per year,with a statistical threshold of 5 cr.To accomplish this,a 97.7%cosmic-ray background rejection rate around 1 TeV and 99.8%around 6 TeV with an ap proximate photon acceptance of 50%is achieved after applying an algorithm to separate gamma-induced showers.The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45°at 1 TeV and better than 0.2°above 6 TeV,with a pointing accuracy better than 0.05°.These values all match the design specifications.The energy resolution is found to be 33%for gamma rays around 6 TeV.The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories.展开更多
The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In t...The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows.展开更多
The LHAASO-WFCTA experiment,which aims to observe cosmic rays in the sub-EeV range using the fluorescence technique,uses a new generation of high-performance telescopes.To ensure that the experiment has ex-cellent det...The LHAASO-WFCTA experiment,which aims to observe cosmic rays in the sub-EeV range using the fluorescence technique,uses a new generation of high-performance telescopes.To ensure that the experiment has ex-cellent detection capability associated with the measurement of the energy spectrum,the primary composition of cosmic rays,and so on,an accurate geometrical reconstruction of air-shower events is fundamental.This paper de-scribes the development and testing of geometrical reconstruction for stereo viewed events using the WFCTA(Wide Field of view Cherenkov/Fluorescence Telescope Array)detectors.Two approaches,which take full advantage ofthe WFCTA detectors.are investigated.One is the stereo-angular method,which uses the pointing of triggered SiPMs in the shower trajectory,and the other is the stereo-timing method,which uses the triggering time of the fired SiPMs.The results show that both methods have good geometrical resolution:the resolution of the stereo-timing method is slightly better than the stereo-angular method because the resolution of the latter is slightly limited by the shower track length.展开更多
The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by ...The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2%precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.展开更多
The Water Cherenkov Detector Array(WCDA) is a major component of the Large High Altitude Air Shower Array Observatory(LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under con...The Water Cherenkov Detector Array(WCDA) is a major component of the Large High Altitude Air Shower Array Observatory(LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under construction. WCDA is aimed at the study of TeV γ-rays. In order to evaluate the prospects of searching for TeV γ-ray sources with WCDA, we present a projection of the one-year sensitivity of WCDA to TeV γ-ray sources from TeVCat using an all-sky approach. Out of 128 TeVCat sources observable by WCDA up to a zenith angle of 45°, we estimate that 42 would be detectable in one year of observations at a median energy of 1 TeV. Most of them are Galactic sources, and the extragalactic sources are Active Galactic Nuclei(AGN).展开更多
Purpose The main scientific goal of LHAASO-WCDA is to survey gamma-ray sources with energy from 100 GeV to 30 TeV.To observe high-energy shower events,especially to measure the energy spectrum of cosmic rays from 100 ...Purpose The main scientific goal of LHAASO-WCDA is to survey gamma-ray sources with energy from 100 GeV to 30 TeV.To observe high-energy shower events,especially to measure the energy spectrum of cosmic rays from 100 TeV to 10 PeV,a dynamic range extension system(WCDA++)is designed to use a 1.5-inch PMT with a dynamic range of four orders of magnitude for each cell in WCDA-1.Method The dynamic range is extended by using these PMTs to measure the effective charge density in the core region of air shower events,which is an important parameter for identifying the composition of primary particles.Result and Conclusion The system has been running for more than one year.In this paper,the details of the design and performance of WCDA++are presented.展开更多
Purpose Observation of high energy and very high emission from Gamma Ray Bursts(GRBs)is crucial to study the gigantic explosion and the underline processes.With a large field-of-view and almost full duty cycle,the Wat...Purpose Observation of high energy and very high emission from Gamma Ray Bursts(GRBs)is crucial to study the gigantic explosion and the underline processes.With a large field-of-view and almost full duty cycle,the Water Cherenkov Detector Array(WCDA),a sub-array of the Large High Altitude Air Shower Observatory(LHAASO),is appropriate to monitor the very high energy emission from unpredictable transients such as GRBs.Method Nevertheless,the main issue for an extensive air shower array is the high energy threshold which limits the horizon of the detector.To address this issue a new trigger method is developed in this article to lower the energy threshold of WCDA for GRB observation.Result The proposed method significantly improves the detection efficiency of WCDA for gamma-rays around the GRB direction at 10-300 GeV.The sensitivity of the WCDA for GRB detection with the new trigger method is estimated.The achieved sensitivity of the quarter WCDA array above 10 GeV is comparable with that of Fermi-LAT.The data analysis process and corresponding fluence upper limit for GRB 190719C is presented as an example.展开更多
In the case of recently established populations of Solenopsis invicta in Taiwan,analysis of genetic variation may provide various dimensions regarding the historical demographic events of this invasive species,which r...In the case of recently established populations of Solenopsis invicta in Taiwan,analysis of genetic variation may provide various dimensions regarding the historical demographic events of this invasive species,which represents a novel opportunity to study the genetic consequences of invasiveness over an ex- tremely short time period.Here we describe genetic structure of two introduced S.invicta populations, Taoyuan and Chiayi,in Taiwan using two classes of markers,nuclear(microsatellites)and mitochondrial (mtDNA)genomes.Pronounced regional differentiation inferred from either AMOVA or Bayesian clustering approach at both genomes suggests that the two populations most likely originate from separate introductions. Furthermore,significant mtDNA but not nuclear differentiation between sympatric social forms suggests two scenarios that interform gene flow is mainly mediated by males,and queens of each form commonly fail to become egg-layers of alternate form.Isolation by distance(IBD)obtained from microsatellites is absent in monogynes,indicating sexuals of this form retain the superior dispersal ability to homogenize the nuclear sig- nature among spatially isolated areas;however,lack of IBD in less vagile polygyne may result from frequent human mediated jump dispersal that erodes the geographical restrictions of genetic exchange.The patterns observed here not only provide insights into how social organization influences the interform gene flow but also reinforce different breeding strategies pursued by two forms in the character of shaping the genetic varia- tion at two levels of genomes.展开更多
TiNi-based shape memory alloys(SMAs)have been used as damping materials to eliminate noise and mechanical vibration.However,their application is limited by low working temperatures and damping capacity.In this work,tw...TiNi-based shape memory alloys(SMAs)have been used as damping materials to eliminate noise and mechanical vibration.However,their application is limited by low working temperatures and damping capacity.In this work,two novel Ti-Zr-Hf-Ni-Co-Cu high entropy shape memory alloys(HESMAs)with different transformation temperatures and damping properties were investigated.The results show that Ti_(25)Zr_(8)Hf_(17)Ni_(30)Co_(5)Cu_(15) has superior damping performance arising from martensitic transformation,shape memory effect(thermal cycle at constant load)as well as superelasticity.Compared to traditional TiNi-based SMAs,the as-cast HESMAs exhibit a much higher ultrahigh yield strength(∼2 GPa)and storage modulus(∼50 GPa).The high configuration entropy of the HESMAs with high uneven internal stress and severe lattice distortion is revealed as the underlying mechanisms governing distinctive damping performance.The effects of high configuration entropy and microheterogeneity on the martensitic transforma-tion behavior and damping performance of HESMAs are clarified in this work,which provides a basis for designing alloys with superior damping properties.展开更多
The generation of plasma in a microwave ion source involves confining electrons using a static magnetic field and energizing them with an electromagnetic field that transmitted into the plasma chamber.However,accordin...The generation of plasma in a microwave ion source involves confining electrons using a static magnetic field and energizing them with an electromagnetic field that transmitted into the plasma chamber.However,according to electromagnetics theory,there is always a cut-off size in circular wave guides for a given frequency.For a 2.45 GHz microwave,this dimension is 72 mm,which should theoretically prevent transmission of the microwave into the discharge chamber and no plasma can be generated.Since 2006 Peking University(PKU)has successfully developed a series of permanent magnet 2.45 GHz microwave ion sources(PKU PMECRs)with a discharge chamber less than 50 mm,capable of delivering tens of mA beams for accelerators.To explain this anomalous phenomenon,a hybrid discharge heating(HDH)mode that combines surface wave plasma and electron cyclotron heating has been proposed.This HDH mode not only successfully explains PKU PMECRs,but also predicts that the optimized inner diameter of the plasma chamber is 24 mm,which is confirmed by experiments involving different liners in the miniaturized microwave ion source.展开更多
Photodynamic therapy(PDT)is a novel therapeutic approach for combating various cancers.PDT involves the administration of a photosensitizer which generates singlet oxygen after light activation.FosPeg■ is the liposom...Photodynamic therapy(PDT)is a novel therapeutic approach for combating various cancers.PDT involves the administration of a photosensitizer which generates singlet oxygen after light activation.FosPeg■ is the liposomal formulation of mTHPC.In this in vitro study,the photodynamic efficacy of FosPeg■ on a human colon cancer cell line(HT29)was investigated via studying the cellular uptake of FosPeg■,FosPeg■ PDT mediated photocytotoxicity and the cell death mechanism were triggered.FosPeg■ PDT demonstrated its antitumor effect in a drug and light dose-dependent manner in HT-29 cells.Lethal dose(LD50)was achieved with 0.4g/mL of drug and 3 J/cm^(2) of light dose.FosPeg■ PDT triggered apoptotic cell death via activating caspase cascade and regulating cell cycle progression.In conclusion,FosPegr-PDT is an effective measure to combat human colon cancer cells.展开更多
Nasopharyngeal carcinoma(NPC)is a prevalent cancer in some areas of southern Asia.To explore the potential of photodynamic therapy(PDT)for the treatment of NPC,a small molecule prodrug 5-aminolevulinic acid(ALA)and it...Nasopharyngeal carcinoma(NPC)is a prevalent cancer in some areas of southern Asia.To explore the potential of photodynamic therapy(PDT)for the treatment of NPC,a small molecule prodrug 5-aminolevulinic acid(ALA)and its methyl ester(MAL)mediated PDT was studied in vitro.The results showed that human NPC cells were sensitive to both ALA-and MAL-mediated PDT.However,ALA was more effective than MAL,possiblly due to a higher efficiency of ALA on producing endogenous protoporphyrin(PpIX)in NPC cells.Neither ALA nor MAL caused any significant genotoxicity.The ALA-based PDT might be a useful modality in the treatment ofNPC.展开更多
基金This work was supported by National Natural Science Foundation of China(81720108011,81801009,81460107,81970972 and 82001110)the program for Changjiang Scholars and Innovative Research Team in University(No.IRT13051).
文摘Dentin bonding is a dynamic process that involves the penetration of adhesive resin monomers into the extrafibrillar and intrafibrillar demineralized collagen matrix using a wet-bonding technique.However,adhesive resin monomers lack the capacity to infiltrate the intrafibrillar space,and the excess water that is introduced by the wet-bonding technique remains at the bonding interface.This imperfectly bonded interface is inclined to hydrolytic degradation,severely jeopardizing the longevity of bonded clinical restorations.The present study introduces a dentin bonding scheme based on a dry-bonding technique,combined with the use of extrafibrillar demineralization and a collagen-reactive monomer(CRM)-based adhesive(CBA).Selective extrafibrillar demineralization was achieved using 1-wt%high-molecular weight(MW)carboxymethyl chitosan(CMCS)within a clinically acceptable timeframe to create a less aggressive bonding substance for dentin bonding due to its selectively extrafibrillar demineralization capacity.CMCS demineralization decreased the activation of in situ collagenase,improved the shrinking resistance of demineralized collagen,and thus provided stronger and more durable bonding than traditional phosphoric acid etching.The new dentin bonding scheme that contained CMCS and CBA and used a dry-bonding technique achieved an encouraging dentin bonding strength and durability with low technical sensitivity.This bonding scheme can be used to improve the stability of the resin-dentin interface and foster the longevity of bonded clinical restorations.
文摘Mechanicalalloyingof Fex Mo1 x( x = 0 2 0 9) with blend elements Fe and Mo powders havebeen performedina highenergyplantball. Theresultsindicatedthatthesolubilityof Fein Moor Moin Feis morethen 20at.% andthecomposition x ofamorphousofthissystem is in therangeof0 4 0 7 . Accordingtothethermodynamicpropertiesfortheamorphousformofalloys,thecomposition range of amorphous form for Fe Mosystem hasbeen investigatedwith Miedematheory. Thetheoreticalresults arein reasonable with experimental data.
基金Supported by National Natural Science Foundation of China (10979045, 11175182, 11175180)
文摘In the Hefei Light Source (HLS) storage ring, multibunch operation is used to obtain a high luminosity. Multibunch instabilities can severely limit light source performance with a variety of negative impacts, including beam loss, low injection efficiency, and overall degradation of the beam quality. Instabilities of a multibunch beam can be mitigated using certain techniques including increasing natural damping (operating at a higher energy), lowering the beam current, and increasing Landau damping. However, these methods are not adequate to stabilize a multibunch electron beam at a low energy and with a high current. In order to combat beam instabilities in the HLS storage ring, active feedback systems including a longitudinal feedback system (LFB) and a transverse feedback system (TFB) will be developed as part of the HLS upgrade project, the HLS-Ⅱ storage ring project. As a key component of the longitudinal bunch-by-bunch feedback system, an LFB kicker cavity with a wide bandwidth and high shunt impedance is required. In this paper we report our work on the design of the LFB kicker cavity for the HLS-Ⅱ storage ring and present the new tuning and optimization techniques developed in designing this high performance LFB kicker.
基金Supported by US Department of Energy(DE-FG02-97ER41033)Fundamental Research Funds for the Central Universities of China(WK2310000032)
文摘The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers(FELs), and the High Intensity Gamma-ray Source(HIGS). It is operated with a beam current ranging from about1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors(BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.
基金The project was funded by the EPSRC Grant(EP/101490X/1)on synthetic materials and metamaterials studies.
文摘In this paper,we investigate the possibility of using the heterogeneous materials,with cuboid metallic inclusions inside a dielectric substrate(host)to control the effective permittivity.We find that in the gigahertz range,such a material demonstrates a significantly larger permittivity compared to the pure dielectric substrate.Three principal orientations of microscale cuboid inclusions have been taken into account in this study.The highest permittivity is observed when the orientation provides the largest polarization(electric dipole moment).The detrimental side effect of the metallic inclusion,which leads to the decrease of the effective magnetic permeability,can be suppressed by the proper choice of shape and orientation of the inclusions.This choice can in fact reduce the induced current and hence maximize the permeability.The dissipative losses are shown to be negligible in the relevant range of frequencies and cuboid dimensions.
基金Supported in China by National Key R&D program of China under the grants(2018YF A0404201.2018YFA0404202.2018YF A0404203)by NSFC(12022502,190527,135011,11761141001.U1931112,11775131,U1931201,11905043,U1931108)by NSFSPC(ZR2019MA014),and in Thailand by RTA6280002 from Thailand Science Research and Innovation。
文摘A sub-array of the Large High Altitude Air Shower Observatory(LHAASO),KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV.Even though the detector construction is still underway,half of the KM2A array has been operating stably since the end of 2019.In this paper,we present the KM2A data analysis pipeline and the first observation of the Crab Nebula,a standard candle in very high energy γ-ray astronomy.We detect γ-ray signals from the Crab Nebula in both energy ranges of 10-100 TeV and>100 TeV with high significance,by analyzing the KM2A data of 136 live days between December 2019 and May 2020.With the observations,we test the detector performance,including angular resolution,pointing accuracy and cosmic-ray background rejection power.The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE=(1.13±0.05stat±0.08sys)×10^(-14).(E/20 TeV)-309±0.06stat±0.02syscm^(-2) s^(-1) TeV^(-1).It is consistent with previous measurements by other experiments.This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena,such as cosmic PeVatrons,might be discovered.
基金Supported by the following grants:the National Key R&D program of China(2018YFA0404201,2018YFA0404202,2018YFA0404203)the National Natural Science Foundation of China(12022502,11905227,U1931112,11635011,11761141001,Y811A35,11675187,U1831208,U1931111)in Thailand by RTA6280002 from Thailand Science Research and Innovation。
文摘The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle.The WCDA-1 achieves a sensitivity of 65 mCU per year,with a statistical threshold of 5 cr.To accomplish this,a 97.7%cosmic-ray background rejection rate around 1 TeV and 99.8%around 6 TeV with an ap proximate photon acceptance of 50%is achieved after applying an algorithm to separate gamma-induced showers.The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45°at 1 TeV and better than 0.2°above 6 TeV,with a pointing accuracy better than 0.05°.These values all match the design specifications.The energy resolution is found to be 33%for gamma rays around 6 TeV.The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories.
基金Daya Bay is supported in part by the Ministry of Science and Technology o f China, the U.S. Department o f Energy, the Chinese Academy of Sciences, the CASCenter for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government,the China General Nuclear Power Group, Key Laboratory of Particle and Radiation Imaging (Tsinghua University), the Ministry of Education, Key Laboratory ofParticle Physics and Particle Irradiation (Shandong University), the Ministry o f Education, Shanghai Laboratory for Particle Physics and Cosmology, the ResearchGrants Council o f the Hong Kong Special Administrative Region of China, the University Development Fund of the University of Hong Kong, the MOE program forResearch of Excellence at National Taiwan University, National Chiao-Tung University, NSC fund support from Taiwan, the U.S. National Science Foundation, the AlfredP. Sloan Foundation, the Ministry o f Education, Youth, and Sports of the Czech Republic, the Charles University GAUK (284317), the Joint Institute o f NuclearResearch in Dubna, Russia, the National Commission of Scientific and Technological Research of Chile, and the Tsinghua University Initiative Scientific Research Program.
文摘The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows.
基金National Natural Science Foundation of China(11903005,11563004,11475190)。
文摘The LHAASO-WFCTA experiment,which aims to observe cosmic rays in the sub-EeV range using the fluorescence technique,uses a new generation of high-performance telescopes.To ensure that the experiment has ex-cellent detection capability associated with the measurement of the energy spectrum,the primary composition of cosmic rays,and so on,an accurate geometrical reconstruction of air-shower events is fundamental.This paper de-scribes the development and testing of geometrical reconstruction for stereo viewed events using the WFCTA(Wide Field of view Cherenkov/Fluorescence Telescope Array)detectors.Two approaches,which take full advantage ofthe WFCTA detectors.are investigated.One is the stereo-angular method,which uses the pointing of triggered SiPMs in the shower trajectory,and the other is the stereo-timing method,which uses the triggering time of the fired SiPMs.The results show that both methods have good geometrical resolution:the resolution of the stereo-timing method is slightly better than the stereo-angular method because the resolution of the latter is slightly limited by the shower track length.
基金Supported in part by the Ministry of Science and Technology of Chinathe U.S.Department of Energy,the Chinese Academy of Sciences,the CAS Center for Excellence in Particle Physics,the National Natural Science Foundation of China+3 种基金the Guangdong provincial governmentthe Shenzhen municipal government,the China General Nuclear Power Group,the Research Grants Council of the Hong Kong Special Administrative Region of China,the Ministry of Education in TWthe U.S.National Science Foundation,the Ministry of Education,Youth,and Sports of the Czech Republic,the Charles University Research Centre UNCE,the Joint Institute of Nuclear Research in Dubna,Russiathe National Commission of Scientific and Technological Research of Chile。
文摘The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2%precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.
基金Supported by National Natural Science Foundation of China(11761141001,11635011,11873005)The LHAASO project is supported by the National Key R&D Program of China(2018YFA0404200),the Chinese Academy of Sciences,the Key Laboratory of Particle Astrophysics,IHEP,CAS。
文摘The Water Cherenkov Detector Array(WCDA) is a major component of the Large High Altitude Air Shower Array Observatory(LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under construction. WCDA is aimed at the study of TeV γ-rays. In order to evaluate the prospects of searching for TeV γ-ray sources with WCDA, we present a projection of the one-year sensitivity of WCDA to TeV γ-ray sources from TeVCat using an all-sky approach. Out of 128 TeVCat sources observable by WCDA up to a zenith angle of 45°, we estimate that 42 would be detectable in one year of observations at a median energy of 1 TeV. Most of them are Galactic sources, and the extragalactic sources are Active Galactic Nuclei(AGN).
基金This research work is also supported by following grants.The National Key R&D program of China under the Grant 2018YFA0404201,2018YFA0404202 and 2018YFA0404203by the National Natural Science Foundation of China(NSFC Grants Nos.12022502,No.11905227,No.U1931112,No.11635011,No.11761141001,No.Y811A35,No.11675187,No.U1831208,No.11873005)+1 种基金by the Key R&D Program of SiChuan Province under the Grant 2019ZYZF0001in Thailand by RTA6280002 from Thailand Science Research and Innovation.
文摘Purpose The main scientific goal of LHAASO-WCDA is to survey gamma-ray sources with energy from 100 GeV to 30 TeV.To observe high-energy shower events,especially to measure the energy spectrum of cosmic rays from 100 TeV to 10 PeV,a dynamic range extension system(WCDA++)is designed to use a 1.5-inch PMT with a dynamic range of four orders of magnitude for each cell in WCDA-1.Method The dynamic range is extended by using these PMTs to measure the effective charge density in the core region of air shower events,which is an important parameter for identifying the composition of primary particles.Result and Conclusion The system has been running for more than one year.In this paper,the details of the design and performance of WCDA++are presented.
基金This work is supported by the National Key R&D Program of China under the Grant 2018YFA0404201the Natural Sciences Foundation of China under the Grants 12022502,11635011the Key R&D Program of SiChuan Province under the Grant 2019ZYZF0001.
文摘Purpose Observation of high energy and very high emission from Gamma Ray Bursts(GRBs)is crucial to study the gigantic explosion and the underline processes.With a large field-of-view and almost full duty cycle,the Water Cherenkov Detector Array(WCDA),a sub-array of the Large High Altitude Air Shower Observatory(LHAASO),is appropriate to monitor the very high energy emission from unpredictable transients such as GRBs.Method Nevertheless,the main issue for an extensive air shower array is the high energy threshold which limits the horizon of the detector.To address this issue a new trigger method is developed in this article to lower the energy threshold of WCDA for GRB observation.Result The proposed method significantly improves the detection efficiency of WCDA for gamma-rays around the GRB direction at 10-300 GeV.The sensitivity of the WCDA for GRB detection with the new trigger method is estimated.The achieved sensitivity of the quarter WCDA array above 10 GeV is comparable with that of Fermi-LAT.The data analysis process and corresponding fluence upper limit for GRB 190719C is presented as an example.
文摘In the case of recently established populations of Solenopsis invicta in Taiwan,analysis of genetic variation may provide various dimensions regarding the historical demographic events of this invasive species,which represents a novel opportunity to study the genetic consequences of invasiveness over an ex- tremely short time period.Here we describe genetic structure of two introduced S.invicta populations, Taoyuan and Chiayi,in Taiwan using two classes of markers,nuclear(microsatellites)and mitochondrial (mtDNA)genomes.Pronounced regional differentiation inferred from either AMOVA or Bayesian clustering approach at both genomes suggests that the two populations most likely originate from separate introductions. Furthermore,significant mtDNA but not nuclear differentiation between sympatric social forms suggests two scenarios that interform gene flow is mainly mediated by males,and queens of each form commonly fail to become egg-layers of alternate form.Isolation by distance(IBD)obtained from microsatellites is absent in monogynes,indicating sexuals of this form retain the superior dispersal ability to homogenize the nuclear sig- nature among spatially isolated areas;however,lack of IBD in less vagile polygyne may result from frequent human mediated jump dispersal that erodes the geographical restrictions of genetic exchange.The patterns observed here not only provide insights into how social organization influences the interform gene flow but also reinforce different breeding strategies pursued by two forms in the character of shaping the genetic varia- tion at two levels of genomes.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant Nos.51971178,52271153 and 51871132)the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province (Grant No.2021JC-12)+1 种基金the Natural Science Foundation of Chongqing (Grant No.cstc2020jcyj-jqX0001)the Youth Innovation Promotion Association CAS (2021188).
文摘TiNi-based shape memory alloys(SMAs)have been used as damping materials to eliminate noise and mechanical vibration.However,their application is limited by low working temperatures and damping capacity.In this work,two novel Ti-Zr-Hf-Ni-Co-Cu high entropy shape memory alloys(HESMAs)with different transformation temperatures and damping properties were investigated.The results show that Ti_(25)Zr_(8)Hf_(17)Ni_(30)Co_(5)Cu_(15) has superior damping performance arising from martensitic transformation,shape memory effect(thermal cycle at constant load)as well as superelasticity.Compared to traditional TiNi-based SMAs,the as-cast HESMAs exhibit a much higher ultrahigh yield strength(∼2 GPa)and storage modulus(∼50 GPa).The high configuration entropy of the HESMAs with high uneven internal stress and severe lattice distortion is revealed as the underlying mechanisms governing distinctive damping performance.The effects of high configuration entropy and microheterogeneity on the martensitic transforma-tion behavior and damping performance of HESMAs are clarified in this work,which provides a basis for designing alloys with superior damping properties.
基金supported by National Natural Science Foundation of China(Grant Nos.12205019,12147144 and 11975036).The support from State Key Laboratory of Nuclear Physics and Technology,Peking University is appreciated.
文摘The generation of plasma in a microwave ion source involves confining electrons using a static magnetic field and energizing them with an electromagnetic field that transmitted into the plasma chamber.However,according to electromagnetics theory,there is always a cut-off size in circular wave guides for a given frequency.For a 2.45 GHz microwave,this dimension is 72 mm,which should theoretically prevent transmission of the microwave into the discharge chamber and no plasma can be generated.Since 2006 Peking University(PKU)has successfully developed a series of permanent magnet 2.45 GHz microwave ion sources(PKU PMECRs)with a discharge chamber less than 50 mm,capable of delivering tens of mA beams for accelerators.To explain this anomalous phenomenon,a hybrid discharge heating(HDH)mode that combines surface wave plasma and electron cyclotron heating has been proposed.This HDH mode not only successfully explains PKU PMECRs,but also predicts that the optimized inner diameter of the plasma chamber is 24 mm,which is confirmed by experiments involving different liners in the miniaturized microwave ion source.
基金This study was supported by The Hong Kong Polytechnic University Central Research Grant (G-YJ67 and G-U737).
文摘Photodynamic therapy(PDT)is a novel therapeutic approach for combating various cancers.PDT involves the administration of a photosensitizer which generates singlet oxygen after light activation.FosPeg■ is the liposomal formulation of mTHPC.In this in vitro study,the photodynamic efficacy of FosPeg■ on a human colon cancer cell line(HT29)was investigated via studying the cellular uptake of FosPeg■,FosPeg■ PDT mediated photocytotoxicity and the cell death mechanism were triggered.FosPeg■ PDT demonstrated its antitumor effect in a drug and light dose-dependent manner in HT-29 cells.Lethal dose(LD50)was achieved with 0.4g/mL of drug and 3 J/cm^(2) of light dose.FosPeg■ PDT triggered apoptotic cell death via activating caspase cascade and regulating cell cycle progression.In conclusion,FosPegr-PDT is an effective measure to combat human colon cancer cells.
基金This project was partially supported by a Hong Kong Polytechnic University grant(GU737).
文摘Nasopharyngeal carcinoma(NPC)is a prevalent cancer in some areas of southern Asia.To explore the potential of photodynamic therapy(PDT)for the treatment of NPC,a small molecule prodrug 5-aminolevulinic acid(ALA)and its methyl ester(MAL)mediated PDT was studied in vitro.The results showed that human NPC cells were sensitive to both ALA-and MAL-mediated PDT.However,ALA was more effective than MAL,possiblly due to a higher efficiency of ALA on producing endogenous protoporphyrin(PpIX)in NPC cells.Neither ALA nor MAL caused any significant genotoxicity.The ALA-based PDT might be a useful modality in the treatment ofNPC.