期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
利用多传感器跟踪机动目标:数据越多总意味着估计越好吗?
1
作者 w.D.布莱亚 Y.巴-夏洛姆 陈爱元 《舰船指挥控制系统》 1997年第4期49-56,共8页
在文献中考虑利用多传感器跟踪机动目标一类的问题时,支持特定目标跟踪的传感器数量及类型通常相对于目标假定位置是固定的。然而,在许多多传感器系统中,支持某一特定目标跟踪的传感器数量及类型,可由于各个传感器的机动性、类型及资源... 在文献中考虑利用多传感器跟踪机动目标一类的问题时,支持特定目标跟踪的传感器数量及类型通常相对于目标假定位置是固定的。然而,在许多多传感器系统中,支持某一特定目标跟踪的传感器数量及类型,可由于各个传感器的机动性、类型及资源的制约而随时变化。这种在传感器系统配置上的变化性,在跟踪机动目标时造成严重的问题,这是由于目标运动模型存有不确定性。卡尔曼滤波器通常用于滤波位置测量,以估计目标的位置,速度和加速度。在设计卡尔曼滤波器时,过程噪声(加速度)方差Q_k的如此选定以致于65%到95%的概率区间能包含目标的最大加速度水平。然而,当目标机动时,加速度以一种确定性方式变化。于是,与过程噪声相关的白噪声假设发生偏离,滤波器在目标机动期间产生状态估计偏差。如果选定一个较大的Q_k,则在机动时的状态估计偏差较小,但当目标不作机动时,此时的Q_k只能粗劣地表征目标运动,而且滤波性能远远偏离最优了。这里,举出了目标在单一坐标系运动的例子,说明了利用多传感器跟踪机动目标存在的问题,从中表明两传感器(在确定条件下,其中包括各传感器的正确配置)具有较之单一传感器更糟糕的跟踪性能。将交互式多模型算法(IMM)应用于该范例中,证明了它是一种解决跟踪滤波器性能问题的潜在方法。 展开更多
关键词 多传感器 跟踪机动目标 滤波器
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部