At T-junctions, where hot and cold streams flowing in pipes join and mix, significant temperature fluctuations can be created in very close neighborhood of the pipe walls. The wall temperature fluctuations cause cycli...At T-junctions, where hot and cold streams flowing in pipes join and mix, significant temperature fluctuations can be created in very close neighborhood of the pipe walls. The wall temperature fluctuations cause cyclical thermal stresses which may induce fatigue cracking. Temperature fluctuation is of crucial importance in many engineering applications and especially in nuclear power plants. This is because the phenomenon leads to thermal fatigue and might subsequently result in failure of structural material. Therefore, the effects of temperature fluctuation in piping structure at mixing junctions in nuclear power systems cannot be neglected. In nuclear power plant, piping structure is exposed to unavoidable temperature differences in a bid to maintain plant operational capacity. Tightly coupled to temperature fluctuation is flow turbulence, which has attracted extensive attention and has been investigated worldwide since several decades. The focus of this study is to investigate the effects of injection pipe orientation on flow mixing and temperature fluctuation for fluid flow downstream a T-junction. Computational fluid dynamics (CFD) approach was applied using STAR CCM+ code. Four inclination angles including 0 (90), 15, 30 and 45 degrees were studied and the mixing intensity and effective mixing zone were investigated. K-omega SST turbulence model was adopted for the simulations. Results of the analysis suggest that, effective mixing of cold and hot fluid which leads to reduced and uniform temperature field at the pipe wall boundary, is achieved at 0 (90) degree inclination of the branch pipe and hence may lower thermal stress levels in the structural material of the pipe. Turbulence mixing, pressure drop and velocity distribution were also found to be more appreciable at 0 (90) degree inclination angle of the branch pipe relative to the other orientations studied.展开更多
Flow development downstream of a spacer grid is dependent on the upstream conditions and the imposed interface topology, especially at inlet and outlet boundaries. In STAR-CCM+, all interfaces fall into two ...Flow development downstream of a spacer grid is dependent on the upstream conditions and the imposed interface topology, especially at inlet and outlet boundaries. In STAR-CCM+, all interfaces fall into two groups, direct and indirect. A direct interface directly joins together two boundaries composing the interface either permanently or temporarily, for the case of rigid body motion. An explicit connection is created between cells on each side of the interface, so that mass and energy or either of them will occur across the interface. Three options of interface topology namely, in-place, periodic and repeating are available to be imposed at the inlet-outlet boundaries for a flow problem. In the present work, computational fluid dynamic simulation using STAR-CCM+ was performed for the flow of water at a bundle’s Reynolds number of Re1 = 3.4 × 10<sup>4</sup> through a 5 × 5 rod bundle geometry supported by spacer grid with and without split mixing vanes for which the rod-to-rod pitch to diameter ratio was 1.33 and the rod to wall pitch to diameter ratio was 0.74. The two-layer k-epsilon turbulence model with an all y+ automatic wall treatment function in STAR-CCM+ was adopted for an isothermal single phase (water) flow through the geometry with and without imposed cyclic periodic interface boundary condition of fully developed flow type at inlet and outlet boundaries. The objectives were to primarily investigate the extent of predictability of the experimental data by the Computational Fluid Dynamic (CFD) simulation as a measure of reliability on the CFD code employed, and also study the effects of the imposed interface topology on flow redistribution in the presence and absence of split mixing vane. Validation of simulation results with experimental data showed a good correlation of mean flow parameters with experimental data. Generally, the agreement of simulation results with data obtained from the experimental investigation confirmed the suitability of the CFD code, STAR-CCM+ to analyze展开更多
文摘At T-junctions, where hot and cold streams flowing in pipes join and mix, significant temperature fluctuations can be created in very close neighborhood of the pipe walls. The wall temperature fluctuations cause cyclical thermal stresses which may induce fatigue cracking. Temperature fluctuation is of crucial importance in many engineering applications and especially in nuclear power plants. This is because the phenomenon leads to thermal fatigue and might subsequently result in failure of structural material. Therefore, the effects of temperature fluctuation in piping structure at mixing junctions in nuclear power systems cannot be neglected. In nuclear power plant, piping structure is exposed to unavoidable temperature differences in a bid to maintain plant operational capacity. Tightly coupled to temperature fluctuation is flow turbulence, which has attracted extensive attention and has been investigated worldwide since several decades. The focus of this study is to investigate the effects of injection pipe orientation on flow mixing and temperature fluctuation for fluid flow downstream a T-junction. Computational fluid dynamics (CFD) approach was applied using STAR CCM+ code. Four inclination angles including 0 (90), 15, 30 and 45 degrees were studied and the mixing intensity and effective mixing zone were investigated. K-omega SST turbulence model was adopted for the simulations. Results of the analysis suggest that, effective mixing of cold and hot fluid which leads to reduced and uniform temperature field at the pipe wall boundary, is achieved at 0 (90) degree inclination of the branch pipe and hence may lower thermal stress levels in the structural material of the pipe. Turbulence mixing, pressure drop and velocity distribution were also found to be more appreciable at 0 (90) degree inclination angle of the branch pipe relative to the other orientations studied.
文摘Flow development downstream of a spacer grid is dependent on the upstream conditions and the imposed interface topology, especially at inlet and outlet boundaries. In STAR-CCM+, all interfaces fall into two groups, direct and indirect. A direct interface directly joins together two boundaries composing the interface either permanently or temporarily, for the case of rigid body motion. An explicit connection is created between cells on each side of the interface, so that mass and energy or either of them will occur across the interface. Three options of interface topology namely, in-place, periodic and repeating are available to be imposed at the inlet-outlet boundaries for a flow problem. In the present work, computational fluid dynamic simulation using STAR-CCM+ was performed for the flow of water at a bundle’s Reynolds number of Re1 = 3.4 × 10<sup>4</sup> through a 5 × 5 rod bundle geometry supported by spacer grid with and without split mixing vanes for which the rod-to-rod pitch to diameter ratio was 1.33 and the rod to wall pitch to diameter ratio was 0.74. The two-layer k-epsilon turbulence model with an all y+ automatic wall treatment function in STAR-CCM+ was adopted for an isothermal single phase (water) flow through the geometry with and without imposed cyclic periodic interface boundary condition of fully developed flow type at inlet and outlet boundaries. The objectives were to primarily investigate the extent of predictability of the experimental data by the Computational Fluid Dynamic (CFD) simulation as a measure of reliability on the CFD code employed, and also study the effects of the imposed interface topology on flow redistribution in the presence and absence of split mixing vane. Validation of simulation results with experimental data showed a good correlation of mean flow parameters with experimental data. Generally, the agreement of simulation results with data obtained from the experimental investigation confirmed the suitability of the CFD code, STAR-CCM+ to analyze