The potential of ALOS-2 SAR data for the estimation of tropical forest structural characteristics was assessed in Vietnam by collecting forest inventory data. The effect of polarization and seasonality of the SAR data...The potential of ALOS-2 SAR data for the estimation of tropical forest structural characteristics was assessed in Vietnam by collecting forest inventory data. The effect of polarization and seasonality of the SAR data on the estimation of forest biomass was analyzed. The combination of HH, HV, and HH/HV polarizations using multiple linear regression did not improve the estimation of biomass compared to using the HV channel independently, as the HH and HH/HV variables were not statistically significant. The dry season HV backscattering intensity was highly sensitive to the biomass compared to the rainy season backscattering intensity. The SAR data acquired in the rainy season with humid and wet canopies was not very sensitive to the biomass. The strong dependence of the biomass estimates with the season of SAR data acquisition confirmed that the choice of right season SAR data is very important for improving the satellite based estimates of the biomass. The validation results showed that the dry season HV polarization could explain 54% variation of the biomass.展开更多
This research has used the L-band radar from ALOS-2 PALSAR-2 and field work data for evaluation of seasonal effects of backscattering intensity on retrieval forest biomass in the tropics. The effects of seasonality an...This research has used the L-band radar from ALOS-2 PALSAR-2 and field work data for evaluation of seasonal effects of backscattering intensity on retrieval forest biomass in the tropics. The effects of seasonality and HH, and HV polarizations of the SAR data on the biomass were analyzed. The dry season HV polarization could explain 61% of the biomass in this study region. The dry season HV backscattering intensity was highly sensitive to the biomass compared to the rainy season backscattering intensity. The SAR data acquired in the rainy season with humid and wet canopies were not very sensitive to the in situ biomass. Strong dependence of the biomass estimates with season of SAR data acquisition confirmed that the choice of right season SAR data is very important for improving the satellite based estimates of the biomass. This research expects that the results obtained in this research will contribute to monitoring of the quantity and quality of forest biomass in Vietnam and other tropical countries.展开更多
文摘The potential of ALOS-2 SAR data for the estimation of tropical forest structural characteristics was assessed in Vietnam by collecting forest inventory data. The effect of polarization and seasonality of the SAR data on the estimation of forest biomass was analyzed. The combination of HH, HV, and HH/HV polarizations using multiple linear regression did not improve the estimation of biomass compared to using the HV channel independently, as the HH and HH/HV variables were not statistically significant. The dry season HV backscattering intensity was highly sensitive to the biomass compared to the rainy season backscattering intensity. The SAR data acquired in the rainy season with humid and wet canopies was not very sensitive to the biomass. The strong dependence of the biomass estimates with the season of SAR data acquisition confirmed that the choice of right season SAR data is very important for improving the satellite based estimates of the biomass. The validation results showed that the dry season HV polarization could explain 54% variation of the biomass.
文摘This research has used the L-band radar from ALOS-2 PALSAR-2 and field work data for evaluation of seasonal effects of backscattering intensity on retrieval forest biomass in the tropics. The effects of seasonality and HH, and HV polarizations of the SAR data on the biomass were analyzed. The dry season HV polarization could explain 61% of the biomass in this study region. The dry season HV backscattering intensity was highly sensitive to the biomass compared to the rainy season backscattering intensity. The SAR data acquired in the rainy season with humid and wet canopies were not very sensitive to the in situ biomass. Strong dependence of the biomass estimates with season of SAR data acquisition confirmed that the choice of right season SAR data is very important for improving the satellite based estimates of the biomass. This research expects that the results obtained in this research will contribute to monitoring of the quantity and quality of forest biomass in Vietnam and other tropical countries.