The non-elementary integrals involving elementary exponential, hyperbolic and trigonometric functions, <img src="Edit_699140d3-f569-463e-b835-7ccdab822717.png" width="290" height="22" ...The non-elementary integrals involving elementary exponential, hyperbolic and trigonometric functions, <img src="Edit_699140d3-f569-463e-b835-7ccdab822717.png" width="290" height="22" alt="" /><img src="Edit_bdd10470-9b63-4b2d-9cec-636969547ca5.png" width="90" height="22" alt="" /><span style="white-space:normal;">and <img src="Edit_e9cd6876-e2b8-45cf-ba17-391f054679b4.png" width="90" height="21" alt="" /></span>where <span style="white-space:nowrap;"><em>α</em>,<span style="white-space:nowrap;"><em>η</em></span><em></em></span> and <span style="white-space:nowrap;"><em>β</em></span> are real or complex constants are evaluated in terms of the confluent hypergeometric function <sub>1</sub><em>F</em><sub>1</sub> and the hypergeometric function <sub>1</sub><em>F</em><sub>2</sub>. The hyperbolic and Euler identities are used to derive some identities involving exponential, hyperbolic, trigonometric functions and the hypergeometric functions <sub style="white-space:normal;">1</sub><em style="white-space:normal;">F</em><sub style="white-space:normal;">1</sub> and <sub style="white-space:normal;">1</sub><em style="white-space:normal;">F</em><sub style="white-space:normal;">2</sub>. Having evaluated, these non-elementary integrals, some new probability measures generalizing the gamma-type and Gaussian distributions are also obtained. The obtained generalized probability distributions may, for example, allow to perform better statistical tests than those already known (e.g. chi-square (<span style="white-space:nowrap;"><em>x</em><sup>2</sup></span>) statistical tests and other statistical tests constructed based on the central limit theorem (CLT)), while avoiding the use of computational approximations (or methods) which are in general expensive and associated with numerical errors.展开更多
文摘The non-elementary integrals involving elementary exponential, hyperbolic and trigonometric functions, <img src="Edit_699140d3-f569-463e-b835-7ccdab822717.png" width="290" height="22" alt="" /><img src="Edit_bdd10470-9b63-4b2d-9cec-636969547ca5.png" width="90" height="22" alt="" /><span style="white-space:normal;">and <img src="Edit_e9cd6876-e2b8-45cf-ba17-391f054679b4.png" width="90" height="21" alt="" /></span>where <span style="white-space:nowrap;"><em>α</em>,<span style="white-space:nowrap;"><em>η</em></span><em></em></span> and <span style="white-space:nowrap;"><em>β</em></span> are real or complex constants are evaluated in terms of the confluent hypergeometric function <sub>1</sub><em>F</em><sub>1</sub> and the hypergeometric function <sub>1</sub><em>F</em><sub>2</sub>. The hyperbolic and Euler identities are used to derive some identities involving exponential, hyperbolic, trigonometric functions and the hypergeometric functions <sub style="white-space:normal;">1</sub><em style="white-space:normal;">F</em><sub style="white-space:normal;">1</sub> and <sub style="white-space:normal;">1</sub><em style="white-space:normal;">F</em><sub style="white-space:normal;">2</sub>. Having evaluated, these non-elementary integrals, some new probability measures generalizing the gamma-type and Gaussian distributions are also obtained. The obtained generalized probability distributions may, for example, allow to perform better statistical tests than those already known (e.g. chi-square (<span style="white-space:nowrap;"><em>x</em><sup>2</sup></span>) statistical tests and other statistical tests constructed based on the central limit theorem (CLT)), while avoiding the use of computational approximations (or methods) which are in general expensive and associated with numerical errors.