Fahliyan Formation is importance in terms of Zagros stratigraphy since it is one of the oil reservoir rocks at the Jurassic-Cretaceous boundary. This rock unit consists of two types of deep and shallow facies in Zagro...Fahliyan Formation is importance in terms of Zagros stratigraphy since it is one of the oil reservoir rocks at the Jurassic-Cretaceous boundary. This rock unit consists of two types of deep and shallow facies in Zagros area. Recognition of bio-zones as well as discontinuity or continuity between the studied formation and the encompassed stratais taken into consideration. In order to study biostratigraphy on Fahliyan Formation, the stratigraphic section of Kuh-e-siah in the north-east of Fars Province was selected. In this section, Fahliyan Formation is measured 345 m consisting of thin to medium-bedded of limestone with the interbeds of sandy and dolomitic limestones. Fahliyan Formation conformably overlies Surmeh formation and underlies the marls of Gadvan formation. Vertical distribution of the identified foraminifers and calcareous algae confirms presence of 3 biozones in the sediments of Fahliyan Formation, as follows: 1) Calpionella alpina zone;2) Pseudochrysalidina conica zone;3) Pseudocyclammina lituus-Trocholina sp. assemblage zone. Based on Established biozones, the age of Fahliyan Formation in Kuh-e-Siah section was determined from Berriasian to Late Hauterivian.展开更多
In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers(Ph C-TIQD-VCSEL) are studied through analyzing a modified modulation transfer functio...In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers(Ph C-TIQD-VCSEL) are studied through analyzing a modified modulation transfer function. The function is based on the rate equations describing the carrier dynamics at different energy levels of dot and injector well. Although the frequency modulation response component associated with carrier dynamics in wetting layer(WL) and at excited state(ES) levels of dots limits the total bandwidth in conventional QD-VCSEL, our study shows that it can be compensated for by electron tunneling from the injector well into the dot in TIQD structure. Carrier back tunneling time is one of the most important parameters, and by increment of that, the bias current dependence of the total bandwidth will be insignificant. It is proved that at high bias current, the limitation of the WL-ES level plays an important role in reducing the total bandwidth and results in rollovers on 3-d B bandwidth-I curves. In such a way, for smaller air hole diameter of photonic crystal, the effect of this reduction is stronger.展开更多
文摘Fahliyan Formation is importance in terms of Zagros stratigraphy since it is one of the oil reservoir rocks at the Jurassic-Cretaceous boundary. This rock unit consists of two types of deep and shallow facies in Zagros area. Recognition of bio-zones as well as discontinuity or continuity between the studied formation and the encompassed stratais taken into consideration. In order to study biostratigraphy on Fahliyan Formation, the stratigraphic section of Kuh-e-siah in the north-east of Fars Province was selected. In this section, Fahliyan Formation is measured 345 m consisting of thin to medium-bedded of limestone with the interbeds of sandy and dolomitic limestones. Fahliyan Formation conformably overlies Surmeh formation and underlies the marls of Gadvan formation. Vertical distribution of the identified foraminifers and calcareous algae confirms presence of 3 biozones in the sediments of Fahliyan Formation, as follows: 1) Calpionella alpina zone;2) Pseudochrysalidina conica zone;3) Pseudocyclammina lituus-Trocholina sp. assemblage zone. Based on Established biozones, the age of Fahliyan Formation in Kuh-e-Siah section was determined from Berriasian to Late Hauterivian.
文摘In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers(Ph C-TIQD-VCSEL) are studied through analyzing a modified modulation transfer function. The function is based on the rate equations describing the carrier dynamics at different energy levels of dot and injector well. Although the frequency modulation response component associated with carrier dynamics in wetting layer(WL) and at excited state(ES) levels of dots limits the total bandwidth in conventional QD-VCSEL, our study shows that it can be compensated for by electron tunneling from the injector well into the dot in TIQD structure. Carrier back tunneling time is one of the most important parameters, and by increment of that, the bias current dependence of the total bandwidth will be insignificant. It is proved that at high bias current, the limitation of the WL-ES level plays an important role in reducing the total bandwidth and results in rollovers on 3-d B bandwidth-I curves. In such a way, for smaller air hole diameter of photonic crystal, the effect of this reduction is stronger.