For the first time,the changes in autofluorescence spectra of ex vivo rat skin have been experimentally investigated using the combination of fluorescence spectroscopy and optical immersion clearing.The glucose,glycer...For the first time,the changes in autofluorescence spectra of ex vivo rat skin have been experimentally investigated using the combination of fluorescence spectroscopy and optical immersion clearing.The glucose,glycerol and propylene glycol solutions were used as clearing agents.The optical clearing was performed from the dermal side of skin imitating the in vivo injection of clearing agent under the dermal layers.In this contribution,the common properties of autofluorescence variation during optical immersion clearing were determined.The tendency of autofluorescence signal to decrease with reduction of scattering in tissue was noticed and discussed in detail.However,the differences in the shape of spectral curves under application of different clearing agents showed that optical clearing affects the autofluorescence properties of tissue differently depending on the type of clearing liquid.The results obtained are useful for the understanding of tissue optical clearing mechanisms and for improving techniques such as fluorescence spectroscopy.展开更多
The influence of ischemia-reperfusion(I/R)action on pancreatic blood flow(PBF)and the development of acute pancreatitis(AP)in laboratory rats is evaluated in vivo by using the laser speckle contrast imaging(LSCI).Addi...The influence of ischemia-reperfusion(I/R)action on pancreatic blood flow(PBF)and the development of acute pancreatitis(AP)in laboratory rats is evaluated in vivo by using the laser speckle contrast imaging(LSCI).Additionally,the optical properties in norm and under condition of AP in rats were assessed using a modied integrating sphere spectrometer and inverse Monte Carlo(IMC)software.The results of the experimental study of microcirculation of the pancreas in 82 rats in the ischemic model are presented.The data obtained conrm the fact that local ischemia and changes in the blood°ow velocity of the main vessels cause and provoke acute pancreatitis.展开更多
The hollow core photonic crystal waveguide biosensor is designed and described.The biosensor was tested in experiments for artificial sweetener identifcation in drinks.The photonic crystal waveguide biosensor has a hi...The hollow core photonic crystal waveguide biosensor is designed and described.The biosensor was tested in experiments for artificial sweetener identifcation in drinks.The photonic crystal waveguide biosensor has a high sensitivity to the optical properties of liquids flling up the hollow core.The compactness,good integration ability to different optical systems and compatibility for use in industrial settings make such biosensor very promnising for v arious biomedical applicat ions.展开更多
The antitumor efficiency of gold nanorod plasmonic photothermal therapy(PPTT)was evalu-ated experimentally.The rat cholangiocarcinoma line PC-1 was used as a tumor model.Exposureof tumors to S08-nm laser radiation was...The antitumor efficiency of gold nanorod plasmonic photothermal therapy(PPTT)was evalu-ated experimentally.The rat cholangiocarcinoma line PC-1 was used as a tumor model.Exposureof tumors to S08-nm laser radiation was performed,and the noninvasive temperature monitoring of the tumor tissue was carried out using infrared imager.The growth rate kinetics and mor-phological alterations of transplanted liver tumors,as wll as indicators of lipid peroxidation activity and autointoxication in rat serum,were studied,The activation of lipid peroxidation andthe development of autointoxication were detected after PPTT.The results not only demonstratethe antitumor ficacy of the proposed therapeutic technology but also reveal the side effectsin the presence of peroxidation products in systemic circulation.展开更多
Extensive research in the area of optical sensing for medical diagnostics requires development of tissue phantoms with opt ical properties similar to those of living human tissues.Development and improvement of in viv...Extensive research in the area of optical sensing for medical diagnostics requires development of tissue phantoms with opt ical properties similar to those of living human tissues.Development and improvement of in vivo optical measurement systems requires the 1use of stable tissue phantoms with known characteristics,which are mainly used for calibration of such systems and testing their performance over time.Optical and mechanical properties of phantoms depend on their purpose.Nevertheless,they must accurately simulate specific tssues they are supposed to mimic.Many tsues and organs including head possess a multi-layered structure,with specifie optical properties of each layer.However,such a structure is not always addressed in the present-day phantoms.In this paper,we focus on the development of a plain-parallel multi-layered phantom with optical properties(reduced scattering oofficientμ'and absorption cofficientμa)corresponding to the human head layers,such as skin,skul,and gray and white matter of the brain tissue.The phantom is intended for use in noninvasive diffuse near-infrared spectroscopy(NIRS)of humnan brain.Optical parameters of the fabricated phantoms are reconstructed using spectrophotometry and inverse adding-doubling calculation method.The results show that polyinyl chloride plastisol(PVCP)and zinc oxide(ZnO)nanoparticles are suitable materials for fabrication of tissue mimicking phantoms with controlled scattering properties.Good matching was found between optical properties of phantoms and the corresponding values found in the literature.展开更多
文摘For the first time,the changes in autofluorescence spectra of ex vivo rat skin have been experimentally investigated using the combination of fluorescence spectroscopy and optical immersion clearing.The glucose,glycerol and propylene glycol solutions were used as clearing agents.The optical clearing was performed from the dermal side of skin imitating the in vivo injection of clearing agent under the dermal layers.In this contribution,the common properties of autofluorescence variation during optical immersion clearing were determined.The tendency of autofluorescence signal to decrease with reduction of scattering in tissue was noticed and discussed in detail.However,the differences in the shape of spectral curves under application of different clearing agents showed that optical clearing affects the autofluorescence properties of tissue differently depending on the type of clearing liquid.The results obtained are useful for the understanding of tissue optical clearing mechanisms and for improving techniques such as fluorescence spectroscopy.
基金the nancial sup-port of the Project No.13.2251.21.0009 of the Ministry of Science and Higher Education of the Russian Federation.
文摘The influence of ischemia-reperfusion(I/R)action on pancreatic blood flow(PBF)and the development of acute pancreatitis(AP)in laboratory rats is evaluated in vivo by using the laser speckle contrast imaging(LSCI).Additionally,the optical properties in norm and under condition of AP in rats were assessed using a modied integrating sphere spectrometer and inverse Monte Carlo(IMC)software.The results of the experimental study of microcirculation of the pancreas in 82 rats in the ischemic model are presented.The data obtained conrm the fact that local ischemia and changes in the blood°ow velocity of the main vessels cause and provoke acute pancreatitis.
基金supported by Grant No.224014 PHOTONICS4LIFE of FP7-ICT-2007-2Project No.1.4.09+3 种基金RF Governmental contracts 11.519.11.2035,14.B37.21.0728 and 14.B37.21.0563FiDiPro,TEKES Program(40111/11),FinlandSCOPES EC,Uzb/Switz/RF,Swiss NSF,IZ74ZO 137423/1RF President's Grant 1177.2012.2"Scientific Schools".
文摘The hollow core photonic crystal waveguide biosensor is designed and described.The biosensor was tested in experiments for artificial sweetener identifcation in drinks.The photonic crystal waveguide biosensor has a high sensitivity to the optical properties of liquids flling up the hollow core.The compactness,good integration ability to different optical systems and compatibility for use in industrial settings make such biosensor very promnising for v arious biomedical applicat ions.
基金supported by a grant No.14-13-01167 from the Russian Scientic Foundationsupported by the Russian Presidential grant NSh-703.2014.2 (ANB,EAG and VVT)by ABB,GNM and GST was supported by a grant No.14.Z50.31.0004 to support scientic research projects implemented under the supervision of leading scientists at Russian institutions of higher education.
文摘The antitumor efficiency of gold nanorod plasmonic photothermal therapy(PPTT)was evalu-ated experimentally.The rat cholangiocarcinoma line PC-1 was used as a tumor model.Exposureof tumors to S08-nm laser radiation was performed,and the noninvasive temperature monitoring of the tumor tissue was carried out using infrared imager.The growth rate kinetics and mor-phological alterations of transplanted liver tumors,as wll as indicators of lipid peroxidation activity and autointoxication in rat serum,were studied,The activation of lipid peroxidation andthe development of autointoxication were detected after PPTT.The results not only demonstratethe antitumor ficacy of the proposed therapeutic technology but also reveal the side effectsin the presence of peroxidation products in systemic circulation.
基金the National Science Center,Poland funding allocated on the basis of the decision number DEC-20011/03/D/ST7/03540Foundation for Polish Science under Grant No.173/UD/SKILLS/2012+3 种基金DS Programs of the Faculty of Electronics,Telecommunications and Informatics,Gdańsk University of TechnologyEuropean Cooperation in Science and Technology (COST)Action BM1205FiDiPro project 40111/11,TEKES (Finnish Funding Agency for Technology and Innovation)Government of the Russian Federation (Grant No.14.Z50.31.0004 to support scientic research projects implemented under the supervision of leading scientists)and Russian Presidential grant NSh-703.2014.2.
文摘Extensive research in the area of optical sensing for medical diagnostics requires development of tissue phantoms with opt ical properties similar to those of living human tissues.Development and improvement of in vivo optical measurement systems requires the 1use of stable tissue phantoms with known characteristics,which are mainly used for calibration of such systems and testing their performance over time.Optical and mechanical properties of phantoms depend on their purpose.Nevertheless,they must accurately simulate specific tssues they are supposed to mimic.Many tsues and organs including head possess a multi-layered structure,with specifie optical properties of each layer.However,such a structure is not always addressed in the present-day phantoms.In this paper,we focus on the development of a plain-parallel multi-layered phantom with optical properties(reduced scattering oofficientμ'and absorption cofficientμa)corresponding to the human head layers,such as skin,skul,and gray and white matter of the brain tissue.The phantom is intended for use in noninvasive diffuse near-infrared spectroscopy(NIRS)of humnan brain.Optical parameters of the fabricated phantoms are reconstructed using spectrophotometry and inverse adding-doubling calculation method.The results show that polyinyl chloride plastisol(PVCP)and zinc oxide(ZnO)nanoparticles are suitable materials for fabrication of tissue mimicking phantoms with controlled scattering properties.Good matching was found between optical properties of phantoms and the corresponding values found in the literature.
基金carried out with the financial support of the Project No.13.2251.21.0009 of the Ministry of Science and Higher Education of the Russian Federation(agreement No.075-15-2021-942).