针对传统BP神经网络在线估算锂离子电池健康状态(state of health,SOH)容易使权值陷入局部最优解,导致SOH预测不精确。结合模拟退火(simulate anneal,SA)算法能有效收敛于全局最优的特点,提出一种基于SA算法优化BP神经网络的锂离子电池...针对传统BP神经网络在线估算锂离子电池健康状态(state of health,SOH)容易使权值陷入局部最优解,导致SOH预测不精确。结合模拟退火(simulate anneal,SA)算法能有效收敛于全局最优的特点,提出一种基于SA算法优化BP神经网络的锂离子电池SOH在线预测方法。以锂离子电池为研究对象,分析了微分电压、欧姆内阻、循环次数与电池SOH的关系,并以此作为电池的健康状态因子(health indicator,HI)输入至BP神经网络。利用SA算法优化BP神经网络的权值,使预测模型得到最优解。实验结果表明:利用优化算法对电池SOH进行预测,其最大误差仅为1.98%,平均误差为1.09%。相较于传统BP神经网络,优化算法预测最大误差降低了5.62%,平均误差降低2.33%。从而验证了基于SA算法优化BP神经网络能够获取全局最优值并提高电池SOH估算精度是有效的。展开更多
针对常用混合动力汽车(Hybrid electric vehicle, HEV)中锂离子电池在功率波动较大时难以满足需求,以及单个驱动周期内HEV燃油能耗大且能量不能很好回收等问题,研究采用锂离子电池和超级电容器混合储能系统(Lithium-ion battery and sup...针对常用混合动力汽车(Hybrid electric vehicle, HEV)中锂离子电池在功率波动较大时难以满足需求,以及单个驱动周期内HEV燃油能耗大且能量不能很好回收等问题,研究采用锂离子电池和超级电容器混合储能系统(Lithium-ion battery and super-capacitor hybrid energy storage system, Li-SC HESS)与内燃机共同驱动HEV运行.结合比例积分粒子群优化算法(Particle swarm optimization-proportion integration, PSO-PI)控制器和Li-SC HESS内部功率限制管理办法,提出一种改进的基于庞特里亚金极小值原理(Pontryagin s minimum principle, PMP)算法的HEV能量优化控制策略,通过ADVISOR软件建立HEV整车仿真模型,验证该方法的有效性与可行性.仿真结果表明,该能量优化控制策略提高了HEV跟踪整车燃油能耗最小轨迹的实时性,节能减排比改进前提高了1.6%~2%,功率波动时减少了锂离子电池的出力,进而改善了混合储能系统性能,对电动汽车关键技术的后续研究意义重大.展开更多
文摘针对传统BP神经网络在线估算锂离子电池健康状态(state of health,SOH)容易使权值陷入局部最优解,导致SOH预测不精确。结合模拟退火(simulate anneal,SA)算法能有效收敛于全局最优的特点,提出一种基于SA算法优化BP神经网络的锂离子电池SOH在线预测方法。以锂离子电池为研究对象,分析了微分电压、欧姆内阻、循环次数与电池SOH的关系,并以此作为电池的健康状态因子(health indicator,HI)输入至BP神经网络。利用SA算法优化BP神经网络的权值,使预测模型得到最优解。实验结果表明:利用优化算法对电池SOH进行预测,其最大误差仅为1.98%,平均误差为1.09%。相较于传统BP神经网络,优化算法预测最大误差降低了5.62%,平均误差降低2.33%。从而验证了基于SA算法优化BP神经网络能够获取全局最优值并提高电池SOH估算精度是有效的。