期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Elaborating the Functional Roles of a Leucine-Rich Repeat Protein from Arabidopsis thaliana
1
作者 Angela Sibanda-Makuvise Tshegofatso B. Dikobe +6 位作者 Katlego S. Sehlabane Enetia D. Bobo Neo M. Mametja Mutsa M. Takundwa David T. Kawadza thembekile ncube Oziniel Ruzvidzo 《American Journal of Plant Sciences》 CAS 2022年第11期1381-1401,共21页
Plants, just like any other living organism, naturally get attacked by various pathogenic microorganisms such as bacteria, fungi and viruses. However, unlike animals that utilize their specialized circulatory macropha... Plants, just like any other living organism, naturally get attacked by various pathogenic microorganisms such as bacteria, fungi and viruses. However, unlike animals that utilize their specialized circulatory macrophage system to protect themselves, plants instead use a multi-layered complex system termed the plant innate immunity, which recognizes pathogens and transducing downstream defense responses. They have developed a unique type of trans-membrane receptors or R proteins, which extracellularly, are capable of recognizing pathogen-associated molecular patterns (PAMP) such as flagellin and chitin, while intracellularly, they activate their harbored nucleotide cyclases (NCs) such as adenylyl cyclases (ACs), to generate second messenger molecules such as 3’,5’-cyclic adenosine monophosphate (cAMP), which then propagates and magnifies the defense response. To date, only a single R protein from Arabidopsis thaliana (AtLRR) has been shown to possess AC activity as well as having the ability to defend plants against infection by biotrophic and hemi-biotrophic pathogens. Therefore, in order to further broaden information around the functional roles of this protein (AtLRR), we explored it further, using an array of web-based tools or bioinformatics. These included structural analysis, anatomical expression analysis, developmental expression analysis, co-expression analysis, functional enrichment analysis, stimulus-specific expression analysis and promoter analysis. Findings from structural analysis showed that AtLRR is a multi-domain, trans-membrane molecule that is multi-functional, and thus consistent with all known R-proteins. Findings from anatomical and developmental expression analyses showed that AtLRR is mostly expressed in pollen grains and flowers, senescing leaves as well as during the development of seeds, shoots, roots, seedlings, leaves, flowers, and siliques, linking it to the three key plant physiological processes of reproduction, defense and development respectively. Lastly, findings from co-ex 展开更多
关键词 Disease Resistance Adenylyl Cyclase R-Proteins AtLRR Plant Development Plant Reproduction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部