The present study explores an electroreduced graphene oxide-bismuth nanoparticles composite(ErGOBi) as an electrochemical sensor for the determination of an anticancer drug, gemcitabine hydrochloride(GMB). The Er-...The present study explores an electroreduced graphene oxide-bismuth nanoparticles composite(ErGOBi) as an electrochemical sensor for the determination of an anticancer drug, gemcitabine hydrochloride(GMB). The Er-GOBi interface was prepared by drop casting of bismuth nitrate-graphene oxide suspension on a glassy carbon electrode(GCE) followed by electro-reduction in the potential range of 0.6 V to 1.7 V. SEM, FTIR, EDAX and AFM techniques were employed for the characterization of prepared materials. Cyclic voltammetric and electrochemical impedance spectroscopic methods were used to understand the charge transfer properties of stepwise modification of Er-GOBi/GCE. GMB exhibited an irreversible oxidation peak at 1.144 V on Er-GOBi/GCE in phosphate buffer of p H 3. A 100-fold enhanced oxidation peak current was observed at Er-GOBi/GCE when compared to that at bare GCE.Sensing performance of Er GO-Bi/GCE was optimized by varying peak current dependent parameters.Linear relationship between the peak current and concentration of GMB was observed in the range of 0.1–51.1 mmol/L in differential pulse voltammetric method and 2.1–61.1 mmol/L in linear sweep voltammetric method. The practical utility of the proposed sensor, Er-GOBi/GCE was demonstrated by determining GMB in pharmaceutical formulations and spiked urine samples.展开更多
Graphene oxide(GO) was synthesized and characterized by scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDX), atomic force microscopy(AFM), X-ray diffraction(XRD), Fourier transform-infrared sp...Graphene oxide(GO) was synthesized and characterized by scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDX), atomic force microscopy(AFM), X-ray diffraction(XRD), Fourier transform-infrared spectroscopy(FT-IR) and thermogravimetric analysis(TGA). GO was then electrochemically reduced and used for electrochemical study of mycophenolate mofetil(MMF). The electrochemically reduced graphene oxide(ERGO) film on glassy carbon electrode(GCE) showed enhanced peak current for electrooxidation of MMF. MMF exhibited two irreversible oxidation peaks at 0.84 V(peak a_1)and 1.1 V(peak a_2). Effects of accumulation time, pH and scan rate were studied and various electrochemical parameters were calculated. A differential pulse voltammetric method was developed for the determination of MMF in bulk samples and pharmaceutical formulations. Linear relationship was observed between the peak current and concentration of MMF in the range of 40 nM–15 μM with a limit of detection of 11.3 nM. The proposed method is simple, sensitive and inexpensive and, hence, could be readily adopted in clinical and quality control laboratories.展开更多
基金the University Grant Commission, New Delhi, for providing financial support to carry out this study
文摘The present study explores an electroreduced graphene oxide-bismuth nanoparticles composite(ErGOBi) as an electrochemical sensor for the determination of an anticancer drug, gemcitabine hydrochloride(GMB). The Er-GOBi interface was prepared by drop casting of bismuth nitrate-graphene oxide suspension on a glassy carbon electrode(GCE) followed by electro-reduction in the potential range of 0.6 V to 1.7 V. SEM, FTIR, EDAX and AFM techniques were employed for the characterization of prepared materials. Cyclic voltammetric and electrochemical impedance spectroscopic methods were used to understand the charge transfer properties of stepwise modification of Er-GOBi/GCE. GMB exhibited an irreversible oxidation peak at 1.144 V on Er-GOBi/GCE in phosphate buffer of p H 3. A 100-fold enhanced oxidation peak current was observed at Er-GOBi/GCE when compared to that at bare GCE.Sensing performance of Er GO-Bi/GCE was optimized by varying peak current dependent parameters.Linear relationship between the peak current and concentration of GMB was observed in the range of 0.1–51.1 mmol/L in differential pulse voltammetric method and 2.1–61.1 mmol/L in linear sweep voltammetric method. The practical utility of the proposed sensor, Er-GOBi/GCE was demonstrated by determining GMB in pharmaceutical formulations and spiked urine samples.
基金the Board of Research in Nuclear Sciences,Mumbai,for financial assistance(No.2012/37C/8/BRNS/637 dated28-05-2012)
文摘Graphene oxide(GO) was synthesized and characterized by scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDX), atomic force microscopy(AFM), X-ray diffraction(XRD), Fourier transform-infrared spectroscopy(FT-IR) and thermogravimetric analysis(TGA). GO was then electrochemically reduced and used for electrochemical study of mycophenolate mofetil(MMF). The electrochemically reduced graphene oxide(ERGO) film on glassy carbon electrode(GCE) showed enhanced peak current for electrooxidation of MMF. MMF exhibited two irreversible oxidation peaks at 0.84 V(peak a_1)and 1.1 V(peak a_2). Effects of accumulation time, pH and scan rate were studied and various electrochemical parameters were calculated. A differential pulse voltammetric method was developed for the determination of MMF in bulk samples and pharmaceutical formulations. Linear relationship was observed between the peak current and concentration of MMF in the range of 40 nM–15 μM with a limit of detection of 11.3 nM. The proposed method is simple, sensitive and inexpensive and, hence, could be readily adopted in clinical and quality control laboratories.