In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Trans...In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Transform and Adomian Decomposition Method. This technique is hereafter provided and supported with necessary illustrations, together with some attached examples. The results reveal that the new method is very efficient, simple and can be applied to other non-linear problems.展开更多
In this study, we used Double Elzaki Transform (DET) coupled with Adomian polynomial to produce a new method to solve Third Order Korteweg-De Vries Equations (KdV) equations. We will provide the necessary explanation ...In this study, we used Double Elzaki Transform (DET) coupled with Adomian polynomial to produce a new method to solve Third Order Korteweg-De Vries Equations (KdV) equations. We will provide the necessary explanation for this method with addition some examples to demonstrate the effectiveness of this method.展开更多
文摘In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Transform and Adomian Decomposition Method. This technique is hereafter provided and supported with necessary illustrations, together with some attached examples. The results reveal that the new method is very efficient, simple and can be applied to other non-linear problems.
文摘In this study, we used Double Elzaki Transform (DET) coupled with Adomian polynomial to produce a new method to solve Third Order Korteweg-De Vries Equations (KdV) equations. We will provide the necessary explanation for this method with addition some examples to demonstrate the effectiveness of this method.