期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Oil-Price Forecasting Based on Various Univariate Time-Series Models 被引量:3
1
作者 Gurudeo Anand Tularam tareq saeed 《American Journal of Operations Research》 2016年第3期226-235,共10页
Time-series-based forecasting is essential to determine how past events affect future events. This paper compares the performance accuracy of different time-series models for oil prices. Three types of univariate mode... Time-series-based forecasting is essential to determine how past events affect future events. This paper compares the performance accuracy of different time-series models for oil prices. Three types of univariate models are discussed: the exponential smoothing (ES), Holt-Winters (HW) and autoregressive intergrade moving average (ARIMA) models. To determine the best model, six different strategies were applied as selection criteria to quantify these models’ prediction accuracies. This comparison should help policy makers and industry marketing strategists select the best forecasting method in oil market. The three models were compared by applying them to the time series of regular oil prices for West Texas Intermediate (WTI) crude. The comparison indicated that the HW model performed better than the ES model for a prediction with a confidence interval of 95%. However, the ARIMA (2, 1, 2) model yielded the best results, leading us to conclude that this sophisticated and robust model outperformed other simple yet flexible models in oil market. 展开更多
关键词 Oil Price Univariate Time Series Exponential Smoothing Holt-Winters ARIMA Models Model Selection Criteria
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部