This paper investigates the unsteady stagnation-point flow and heat transfer over a moving plate with mass transfer,which is also an exact solution to the unsteady Navier-Stokes(NS)equations.The boundary layer energy ...This paper investigates the unsteady stagnation-point flow and heat transfer over a moving plate with mass transfer,which is also an exact solution to the unsteady Navier-Stokes(NS)equations.The boundary layer energy equation is solved with the closed form solutions for prescribed wall temperature and prescribed wall heat flux conditions.The wall temperature and heat flux have power dependence on both time and spatial distance.The solution domain,the velocity distribution,the flow field,and the temperature distribution in the fluids are studied for different controlling parameters.These parameters include the Prandtl number,the mass transfer parameter at the wall,the wall moving parameter,the time power index,and the spatial power index.It is found that two solution branches exist for certain combinations of the controlling parameters for the flow and heat transfer problems.The heat transfer solutions are given by the confluent hypergeometric function of the first kind,which can be simplified into the incomplete gamma functions for special conditions.The wall heat flux and temperature profiles show very complicated variation behaviors.The wall heat flux can have multiple poles under certain given controlling parameters,and the temperature can have significant oscillations with overshoot and negative values in the boundary layers.The relationship between the number of poles in the wall heat flux and the number of zero-crossing points is identified.The difference in the results of the prescribed wall temperature case and the prescribed wall heat flux case is analyzed.Results given in this paper provide a rare closed form analytical solution to the entire unsteady NS equations,which can be used as a benchmark problem for numerical code validation.展开更多
This paper investigates the unsteady stagnation point flow and heat transfer of magnetohydrodynamic(MHD) fluids over a moving permeable flat surface. The unsteady Navier-Stokes(NS) equations are transformed into a sim...This paper investigates the unsteady stagnation point flow and heat transfer of magnetohydrodynamic(MHD) fluids over a moving permeable flat surface. The unsteady Navier-Stokes(NS) equations are transformed into a similarity nonlinear ordinary differential equation, and a closed form solution is obtained for the unsteadiness parameter of 2. The boundary layer energy equation is transformed into a similarity equation,and is solved for a constant wall temperature and a time-dependent uniform wall heat flux case. The solution domain, velocity, and temperature profiles are calculated for different combinations of parameters including the Prandtl number, mass transfer parameter, wall moving parameter, and magnetic parameter. Two solution branches are obtained for certain combinations of the controlling parameters, and a stability analysis demonstrates that the lower solution branch is not stable. The present solutions provide an exact solution to the entire unsteady MHD NS equations, which can be used for validating the numerical code of computational fluid dynamics.展开更多
In this paper it is shown that up to permutation the C(n,2) codes with maximum size for n = 2,4,6 and 8 are unique and there exactly exist four non-isomorphic C(3,2) codes containing 2 codewords, four non-isomorphic C...In this paper it is shown that up to permutation the C(n,2) codes with maximum size for n = 2,4,6 and 8 are unique and there exactly exist four non-isomorphic C(3,2) codes containing 2 codewords, four non-isomorphic C(5,2) codes with 6 codewords and twelve non-isomorphic C(7,2) codes with 18 codewords.展开更多
文摘This paper investigates the unsteady stagnation-point flow and heat transfer over a moving plate with mass transfer,which is also an exact solution to the unsteady Navier-Stokes(NS)equations.The boundary layer energy equation is solved with the closed form solutions for prescribed wall temperature and prescribed wall heat flux conditions.The wall temperature and heat flux have power dependence on both time and spatial distance.The solution domain,the velocity distribution,the flow field,and the temperature distribution in the fluids are studied for different controlling parameters.These parameters include the Prandtl number,the mass transfer parameter at the wall,the wall moving parameter,the time power index,and the spatial power index.It is found that two solution branches exist for certain combinations of the controlling parameters for the flow and heat transfer problems.The heat transfer solutions are given by the confluent hypergeometric function of the first kind,which can be simplified into the incomplete gamma functions for special conditions.The wall heat flux and temperature profiles show very complicated variation behaviors.The wall heat flux can have multiple poles under certain given controlling parameters,and the temperature can have significant oscillations with overshoot and negative values in the boundary layers.The relationship between the number of poles in the wall heat flux and the number of zero-crossing points is identified.The difference in the results of the prescribed wall temperature case and the prescribed wall heat flux case is analyzed.Results given in this paper provide a rare closed form analytical solution to the entire unsteady NS equations,which can be used as a benchmark problem for numerical code validation.
文摘This paper investigates the unsteady stagnation point flow and heat transfer of magnetohydrodynamic(MHD) fluids over a moving permeable flat surface. The unsteady Navier-Stokes(NS) equations are transformed into a similarity nonlinear ordinary differential equation, and a closed form solution is obtained for the unsteadiness parameter of 2. The boundary layer energy equation is transformed into a similarity equation,and is solved for a constant wall temperature and a time-dependent uniform wall heat flux case. The solution domain, velocity, and temperature profiles are calculated for different combinations of parameters including the Prandtl number, mass transfer parameter, wall moving parameter, and magnetic parameter. Two solution branches are obtained for certain combinations of the controlling parameters, and a stability analysis demonstrates that the lower solution branch is not stable. The present solutions provide an exact solution to the entire unsteady MHD NS equations, which can be used for validating the numerical code of computational fluid dynamics.
文摘In this paper it is shown that up to permutation the C(n,2) codes with maximum size for n = 2,4,6 and 8 are unique and there exactly exist four non-isomorphic C(3,2) codes containing 2 codewords, four non-isomorphic C(5,2) codes with 6 codewords and twelve non-isomorphic C(7,2) codes with 18 codewords.