First-principles spin-polarized density functional theory (DFT) investigations of the structural, electronic, magnetic, and thermodynamics characteristics of the half-Heusler, CoMnTe and RuMnTe compounds are carried...First-principles spin-polarized density functional theory (DFT) investigations of the structural, electronic, magnetic, and thermodynamics characteristics of the half-Heusler, CoMnTe and RuMnTe compounds are carried out. Calculations are accomplished within a state of the art full-potential (FP) linearized (L) augmented plane wave plus a local orbital (APW + lo) computational approach framed within DFT. The generalized gradient approximation (GGA) parameterized by Perdew, Burke, and Ernzerhof (PBE) is implemented as an exchange correlation functional as a part of the total energy calculation. From the analysis of the calculated electronic band structure as well as the density of states for both compounds, a strong hybridization between d states of the higher valent transition metal (TM) atoms (Co, Ru) and lower valent TM atoms of (Mn) is observed. Furthermore, total and partial density of states (PDOS) of the ground state and the results of spin magnetic moments reveal that these compounds are both stable and ideal half-metallic ferromagnetic. The effects of the unit cell volume on the magnetic properties and half-metaliicity are crucial. It is worth noting that our computed results of the total spin magnetic moments, for CoMnTe equal to 4 ~tB and 3 p-B per unit cell for RuMnTe, nicely follow the rule μ2tot = Zt - 18. Using the quasi-harmonic Debye model, which considers the phononic effects, the effecs of pressure P and temperature T on the lattice parameter, bulk modulus, thermal expansion coefficient, Debye temperature, and heat capacity for these compounds are investigated for the first time.展开更多
基金financial support provided by the Deanship of Scientific Research at King Saud University for funding this work through research group project No: RPG-VPP-088
文摘First-principles spin-polarized density functional theory (DFT) investigations of the structural, electronic, magnetic, and thermodynamics characteristics of the half-Heusler, CoMnTe and RuMnTe compounds are carried out. Calculations are accomplished within a state of the art full-potential (FP) linearized (L) augmented plane wave plus a local orbital (APW + lo) computational approach framed within DFT. The generalized gradient approximation (GGA) parameterized by Perdew, Burke, and Ernzerhof (PBE) is implemented as an exchange correlation functional as a part of the total energy calculation. From the analysis of the calculated electronic band structure as well as the density of states for both compounds, a strong hybridization between d states of the higher valent transition metal (TM) atoms (Co, Ru) and lower valent TM atoms of (Mn) is observed. Furthermore, total and partial density of states (PDOS) of the ground state and the results of spin magnetic moments reveal that these compounds are both stable and ideal half-metallic ferromagnetic. The effects of the unit cell volume on the magnetic properties and half-metaliicity are crucial. It is worth noting that our computed results of the total spin magnetic moments, for CoMnTe equal to 4 ~tB and 3 p-B per unit cell for RuMnTe, nicely follow the rule μ2tot = Zt - 18. Using the quasi-harmonic Debye model, which considers the phononic effects, the effecs of pressure P and temperature T on the lattice parameter, bulk modulus, thermal expansion coefficient, Debye temperature, and heat capacity for these compounds are investigated for the first time.