Aims We investigated the regulation of the water status in three predominant perennial C3 phreatophytes(Alhagi sparsifolia,Populus euphratica,Tamarix ramosissima)at typical sites of their occurrence at the southern fr...Aims We investigated the regulation of the water status in three predominant perennial C3 phreatophytes(Alhagi sparsifolia,Populus euphratica,Tamarix ramosissima)at typical sites of their occurrence at the southern fringe of the hyperarid Taklamakan Desert(north-west China).Methods In the foreland of the river oasis of Qira(Cele),we determined meteorological variables,plant biomass production,plant water potentials(WL)and the water flux through the plants.We calculated the hydraulic conductance on the flow path from the soil to the leaves(kSL)and tested the effects of kSL,WL and the leaf-to-air difference in the partial pressure of water vapour(Dw)on stomatal regulation using regression analyses.Important Findings Despite high values of plant water potential at the point of turgor loss,all plants sustained WL at levels that were high enough to maintain transpiration throughout the growing season.In A.sparsifolia,stomatal resistance(rs;related to leaf area or leaf mass)was most closely correlated with kSL;whereas in P.euphratica,~70%of the variation in rs was explained by Dw.In T.ramosissima,leaf area-related rs was significantly correlated with WL and kSL.The regulation mechanisms are in accordance with the growth patterns and the occurrence of the species in relation to their distance to the ground water.展开更多
The presence of lignin reduces the quality of lignocellulosic biomass for forage materials and feedstock for biofuels. In C4 grasses, the brown midrib phenotype has been linked to mutations to genes in the monolignol ...The presence of lignin reduces the quality of lignocellulosic biomass for forage materials and feedstock for biofuels. In C4 grasses, the brown midrib phenotype has been linked to mutations to genes in the monolignol biosynthesis pathway. For example, the Bmr6 gene in sorghum (Sorghum bicolor) has been previously shown to encode cinnamyl alcohol dehydrogenase (CAD), which catalyzes the final step of the monolignol biosynthesis pathway. Mutations in this gene have been shown to reduce the abundance of lignin, enhance digestibility, and improve saccharification efficiencies and ethanol yields. Nine sorghum lines harboring five different bmr6 alleles were identified in an EMS-mutagenized TILLING population. DNA sequencing of Bmr6 revealed that the majority of the mutations impacted evolutionarily conserved amino acids while three-dimensional structural modeling predicted that all of these alleles interfered with the enzyme's ability to bind with its NAPPH cofactor. All of the new alleles reduced in vitro CAD activity levels and enhanced glucose yields following saccharification. Further, many of these lines were associated with higher reductions in acid detergent lignin compared to lines harboring the previously characterized bmr6-ref allele. These bmr6 lines represent new breeding tools for manipulating biomass composition to enhance forage and feedstock quality.展开更多
基金European Union INCO-DC(Project No.ERBIC18CT980275).
文摘Aims We investigated the regulation of the water status in three predominant perennial C3 phreatophytes(Alhagi sparsifolia,Populus euphratica,Tamarix ramosissima)at typical sites of their occurrence at the southern fringe of the hyperarid Taklamakan Desert(north-west China).Methods In the foreland of the river oasis of Qira(Cele),we determined meteorological variables,plant biomass production,plant water potentials(WL)and the water flux through the plants.We calculated the hydraulic conductance on the flow path from the soil to the leaves(kSL)and tested the effects of kSL,WL and the leaf-to-air difference in the partial pressure of water vapour(Dw)on stomatal regulation using regression analyses.Important Findings Despite high values of plant water potential at the point of turgor loss,all plants sustained WL at levels that were high enough to maintain transpiration throughout the growing season.In A.sparsifolia,stomatal resistance(rs;related to leaf area or leaf mass)was most closely correlated with kSL;whereas in P.euphratica,~70%of the variation in rs was explained by Dw.In T.ramosissima,leaf area-related rs was significantly correlated with WL and kSL.The regulation mechanisms are in accordance with the growth patterns and the occurrence of the species in relation to their distance to the ground water.
基金supported by the Office of Science (BER),U.S. Department of Energy grant DE-FG02-07ER64458 (Wilfred Vermerris and Scott E. Sattler)additional funding from USDA-ARS,CRIS project 5440-21220-032-00D (S.E.S,Deanna L. Funnell-Harris.)+2 种基金USDA AFRI grant number 2011-67009-30026 (S.E.S,D.L.F.H.)USDA Biomass Research and Development Initiative grant number 2011-10006-30358 (W.V.)the U.S. DOE’s International Affairs under award number DE-PI0000031 from the U.S. DOE’s Office of Energy Efficiency and Renewable Energy,Bioenergy Technologies Office (W.V)
文摘The presence of lignin reduces the quality of lignocellulosic biomass for forage materials and feedstock for biofuels. In C4 grasses, the brown midrib phenotype has been linked to mutations to genes in the monolignol biosynthesis pathway. For example, the Bmr6 gene in sorghum (Sorghum bicolor) has been previously shown to encode cinnamyl alcohol dehydrogenase (CAD), which catalyzes the final step of the monolignol biosynthesis pathway. Mutations in this gene have been shown to reduce the abundance of lignin, enhance digestibility, and improve saccharification efficiencies and ethanol yields. Nine sorghum lines harboring five different bmr6 alleles were identified in an EMS-mutagenized TILLING population. DNA sequencing of Bmr6 revealed that the majority of the mutations impacted evolutionarily conserved amino acids while three-dimensional structural modeling predicted that all of these alleles interfered with the enzyme's ability to bind with its NAPPH cofactor. All of the new alleles reduced in vitro CAD activity levels and enhanced glucose yields following saccharification. Further, many of these lines were associated with higher reductions in acid detergent lignin compared to lines harboring the previously characterized bmr6-ref allele. These bmr6 lines represent new breeding tools for manipulating biomass composition to enhance forage and feedstock quality.