期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Synthesizing core-shell Ni-rich LiNi_(x)Co_(y)Mn_(z)O_(2) from spent Li-ion battery leachate
1
作者 Seongdeock Jeong Sanghyuk Park +7 位作者 Dongwoo Kim Gyeongbin Ko Wooseok Kim Sungkyu Kim sungho ban Haeun Lee Yonghoon Kim Kyungjung Kwon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期128-138,共11页
As the global electric vehicle market continues to grow,the recycling of Li-ion battery (LIB) becomes more important worldwide and the resynthesis of cathode materials would be the most value-added recycling approach ... As the global electric vehicle market continues to grow,the recycling of Li-ion battery (LIB) becomes more important worldwide and the resynthesis of cathode materials would be the most value-added recycling approach taking into account limited metal resources.Although resynthesized homogenous LiNi_(x)Co_(y)Mn_(z)O_(2)(NCM) from spent LIB leachate shows comparable battery performance to pristine NCM from virgin materials,there is general concern in its cycling performance.Here,we synthesize core–shell(CS) Ni-rich NCM,which consists of Ni-rich NCM as the core and NCM derived from the original or purified leachate of spent LIBs as the shell.Resynthesized CS Ni-rich NCM exhibits improved rate capability resulting from expanded interslab thickness in the NCM structure.CS Ni-rich NCM from purified LIB leachate shows improvement in cycling performance and thermal stability.It specifically delivers a capacity retention of 86.6%at a high temperature after 80 cycles compared to that (75.0%) of pristine CS Ni-rich NCM.These improvements are caused by a relatively high Mg content on the shell and the widespread distribution of Al through the CS structure.CS Ni-rich NCM derived from spent LIB leachate provides a new alternative approach to conventional LIB recycling methods,which would utilize efficiently limited metal resources for the sustainable LIB production. 展开更多
关键词 Li-ion battery Recycling LEACHATE NCM CORE-SHELL
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部