期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于数据驱动的孤岛微网自适应调频策略 被引量:5
1
作者 胡苏南 施永 王新颖 《电源学报》 CSCD 北大核心 2020年第6期5-11,共7页
微电网孤岛运行时,基于下垂控制的并联逆变器无法消除频率的静态偏差,必须借助二次调频来稳定频率值。在进行二次频率控制器参数设计时需要用到微网频率响应模型,然而由于微网系统的结构复杂多变以及系统内微源和负荷种类多样等原因,微... 微电网孤岛运行时,基于下垂控制的并联逆变器无法消除频率的静态偏差,必须借助二次调频来稳定频率值。在进行二次频率控制器参数设计时需要用到微网频率响应模型,然而由于微网系统的结构复杂多变以及系统内微源和负荷种类多样等原因,微网系统的数学模型难以获取,控制器参数也因此难以整定。为解决上述问题,提出一种基于数据驱动的改进无模型自适应控制的二次调频策略,该控制算法仅需要采样关键节点处的输入输出数据,利用RBF神经网络的自适应和自学习能力并按照一定的控制周期在线整定二次调频系统的无模型自适应控制器参数,从而将频率稳定在基准值。仿真结果验证了所提策略有很好的瞬态响应特性,同时具有较强的鲁棒性。 展开更多
关键词 微电网 二次调频 无模型自适应控制 RBF神经网络 参数自整定
下载PDF
Multi-temporal urban semantic understanding based on GF-2 remote sensing imagery:from tri-temporal datasets to multi-task mapping
2
作者 sunan shi Yanfei Zhong +6 位作者 Yinhe Liu Jue Wang Yuting Wan Ji Zhao Pengyuan Lv Liangpei Zhang Deren Li 《International Journal of Digital Earth》 SCIE EI 2023年第1期3321-3347,共27页
High resolution satellite images are becoming increasingly available for urban multi-temporal semantic understanding.However,few datasets can be used for land-use/land-cover(LULC)classification,binary change detection... High resolution satellite images are becoming increasingly available for urban multi-temporal semantic understanding.However,few datasets can be used for land-use/land-cover(LULC)classification,binary change detection(BCD)and semantic change detection(SCD)simultaneously because classification datasets always have one time phase and BCD datasets focus only on the changed location,ignoring the changed classes.Public SCD datasets are rare but much needed.To solve the above problems,a tri-temporal SCD dataset made up of Gaofen-2(GF-2)remote sensing imagery(with 11 LULC classes and 60 change directions)was built in this study,namely,the Wuhan Urban Semantic Understanding(WUSU)dataset.Popular deep learning based methods for LULC classification,BCD and SCD are tested to verify the reliability of WUSU.A Siamese-based multi-task joint framework with a multi-task joint loss(MJ loss)named ChangeMJ is proposed to restore the object boundaries and obtains the best results in LULC classification,BCD and SCD,compared to the state-of-the-art(SOTA)methods.Finally,a large spatial-scale mapping for Wuhan central urban area is carried out to verify that the WUsU dataset and the ChangeMJ framework have good application values. 展开更多
关键词 GF-2 remote sensing imagery multi-temporal satellite datasets urban LULC mapping binary and semantic change detection multi-task framework
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部